Building Economic Models of Human-Computer Interaction Part II

by @leifos and @guidozuc

REDUCING FRICTION

Making interfaces more usable

GOMS

Goals, (Initial situation) **O**perators, Selection Selection Methods and Method A Method B Selection Rules Operator A1 Operator B1 Method Operator A2 One of the first approaches to Operator A3 Operator modelling the time Operator ... Operator ... taken to perform a task. Lots of variants on Goal Goal GOMS

Card, Moran & Newell (1983)

GOMS-KLM

- Keystroke Level Model
 - Aims to model the low level costs of interaction
 - Helps to find ways that are more efficient or better ways to complete a task
 - Analyze the steps involved in a given process
 - Re-arrange or remove unneeded steps
 - Well suited to very goal directed tasks that are completed in a short period of time
 - A method is modelled as a sequence of operations

GOMS-KLM

	Operator	Description	Time (s)
K	Press a Key or	Best typist (135 wpm)	0.08
	button (including	Good typist (90 wpm)	0.12
	shift, control), time varies with user	Avg skilled typist (40 wpm)	0.20
		Avg no-secretary typist (40 wpm)	0.28 or
	SKILL	Typing random letters	0.50
		Typing complex codes	0.75
		Worst typist (unfamiliar with keyboard)	1.20
Р	Point with a mouse	Point with a mouse (range is 0.8 to 1.6 sec, not including button press)	1.10
Н	Home to/from keyboard or other device		0.40
D (nd, ld)	Draw nd straight lines of total length ld		9 nd + 0.16 ld
M	Mentally prepare		1.35 Olson & Nilsen say 1.62
S	Scan	e.g., find coordinates of spreadsheet, not in original KLM	2.29
R(t)	Response by system	Varies with command, including wait if required	t

GOMS-KLM

- Prediction tend to only be valid for expert users who never make errors
- Only provides one view for evaluating the design (cost)
 - Other aspects usefulness, enjoyment, etc. are not considered.
- Model is very low level, and cumbersome
 - Though a variant Quick & Dirty GOMS presents models a simple tree consisting of subtasks
 - And the parent node predicts the time.

Cost Models

- Here we will be taking a more practical approach and defining cost models at an appropriate level of abstraction
 - Depends on the interface, interaction, scenario, etc.
 - For example a keystroke level is appropriate for text entry
 - But, cost of entering a query, viewing snippets, selecting items, could be modelled as a higher level

COST BENEFIT ANALYSIS

A super efficient overview

Cost Benefit Analysis (CBA)

- Aims to estimate and total up the value of the benefits and the costs associated with a particular decision/choice.
- Provides the basis for the comparison of decision/choices.
- Assumption: benefits and costs must be formulated in the same unit of measurement
 - However, we can perform a cost-effectiveness analysis if costs and benefits are in different measurements.

Applying CBA in CHI

- List the alternative decisions/choices
- List the stakeholders
 - For simplicity we will consider only one stakeholder e.g. the user
 - But we could consider other users/collaborators, advertisers, vendors, etc. too.
- Select a measurement and measure all the cost/benefit elements
- Apply discount rate (if appropriate)
- Calculate the net present value.

Speak or Type

- Alternatives:
 - (a) ask Siri,
 - (b) type in the question yourself
- Unit of Measurement
 - Time Spent
 - Quality of Response (given the input)
- Discount Rate:
 - Users prefer to receive a good response sooner (so each additional interaction means the benefit is discounted, by say 1/#interactions)

Туре

• Given the sequence of interactions:

|--|

 We assume that the user receives some payoff for each document (payoff = benefit - cost)

– Let's say: Payoff(type) = -20, Payoff(Ans) =100

-20 100

- Discount the value
 1
 0.5
- Compute NPV

- (-20*1 +100*0.5) *= 30*

Speak

• Given the sequence of interactions when speaking:

|--|

- We assume that the user receives some payoff for each document (payoff = benefit - cost)
 - Let's say: Payoff(Ask) = -10, Payoff(Error)=-5, Payout(Ans)=100

-10 -5 -10 100

• Discount the value

1 0.5 0.33 0.25

Compute NPV

(-10*1 - 5*0.5 - 10*.33 + 100*.25) = 9.17

• But if there is no error then the the NPV(speak) = 40

Cost Benefit Analysis

- Compute the NPV of different methods to determine which alternative is preferable
- But, there is no notion of uncertainty
 - What if there is some probability of an error
 - How good does the system need to be, before you would always speak to the agent?
- We need to consider the uncertainty associated with payoffs.

DECISION THEORY

A super quick introduction

Decision Theory

- Extending the idea of CBA
- **Decision Theory** considers decision problems
 - where the goal is to select the best available/known alternative.
 - Often under uncertainty
- **Example:** You have been given the choice between using *Google* or *Yahoo!*
 - Which one would you use to search the web?
 - Which one would you use to read the news?
 - Which one would you use for a joke?

Decision Theory

- There are **four basic elements**:
 - Acts: the choices/decisions considered by the user
 - Events: occurrences taking place outside the control of the user
 - Outcomes: the result of the occurrence of acts and events
 - Usually have some probability of occurring
 - i.e. Uncertainty in the outcome
 - Payoff: the value the user places on the occurrences
 - Payoff = Benefit Cost
- It is often useful to represent the decision problem as a tree.

Browsing Clusters Example

- Actions: User can select cluster A or B
- Events: System responds with documents
- **Outcomes**: With some probability different amounts of relevant items are returned
- **Payoffs**: The benefit minus the cost for each outcome.

Expected Value

• Expected Value of an Event is:

$$E[event] = \sum_{outcomes} p(outcome) \times g(outcome)$$

- Where **p** is the probability and **g** is the gain.

- Decisions:
 - Select Cluster A: Expected Payoff is: 0.5 * 2 + 0.5 * 1 = 1.5
 - Select Cluster B: Expected Payoff is: 0.25 * 3 + 0.0 = 0.75
- Since the expected payoff of **A** is greater the **B**, then the user should select **A**.

Page Finding

- Your friend has recently completed a marathon, and you have found the page of times for runners.
 - They are ordered by time.
 - You would like to know how fast your friend completed the marathon.
 - However, there are thousands of runners in the list.
- Actions:
 - (a) Scroll through list until you find friends name, or
 - (b) using the Find Command, type friends name

Example adapted from Russell

Scrolling

- Action (a) Scrolling
 - Outcomes:
 - (1) Finds correct name (*p*=1.0)
 - Payoffs in terms of costs only
 - (1) on average examine about *n/2* runners
 - Notes and Assumptions
 - To examine **1** runner takes **2** seconds
 - Total Cost = n seconds.

Finding

- Action (b) Find Command
 - Outcomes:
 - (1) Finds correct name (*p*=1.0)
 - Payoffs in terms of costs only
 - (1) on average examine about *m / 2* runners
 - Notes and Assumptions
 - To reduce down to m runners the user enters k letters
 - Where $m = n/(k+1)^2$
 - To examine 1 runner takes 2 seconds.
 - To enter 1 letter takes 2 seconds.
 - To switch to Finding takes 5 seconds.

Scroll vs Find

• Expected Cost for Finding = m + 2k + 5

- Where m = n/(k+1)²

- Expected Cost for Scroll = n
- Which action should the user take?
 - Compare the costs
 - Scroll, if Total Cost of Scrolling is less than Total Cost of Finding e.g.,

– Scroll, if n < m + 2k + 5

• Homework – do the math 😳

Scrolling with Uncertainty

- Action (a) Scrolling
 - Outcomes:
 - (1) Finds correct name (p=0.9)
 - (2) Finds incorrect name (p=0.05)
 - (3) Misses name (p=0.05)
 - Payoffs in terms of costs only
 - (1) on average examine about *n/2* runners
 - (2) on average examine about *n/2* runners
 - (3) examines all *n* runners
 - To examine 1 runner takes 2 seconds.

Finding with Uncertainty

- Action (b) Find Command
 - Outcomes:
 - (1) Finds correct name (p=0.98)
 - (2) Finds incorrect name (p=0.01)
 - (3) Misses name (p=0.01)
 - Payoffs in terms of costs only
 - (1) on average examine about *m / 2* runners
 - (2) on average examine about *m / 2* runners
 - (3) examines all *m* runners
 - To reduce down to m runners the user enters k letters

 Where m = n/(k+1)² (assumption)
 - To examine 1 runner takes 2 seconds.
 - To enter 1 letter takes 2 seconds.

Scroll vs Find

$$C_{s} = \frac{2n}{2} * 0.9 + \frac{2n}{2} * 0.05 + 2n * 0.05 = 1.05n$$

correct

incorrect

$$C_{f} = \frac{2m}{2} * 0.98 + \frac{2m}{2} * 0.01 + 2m * 0.01 + 2k + 5 =$$

$$= 1.01m + 2k + 5$$

If *n* is large, then finding is cheaper than scrolling. And the user is more likely to get to the correct name & time via the find command.

Cost-Effectiveness Ratio

• Since our costs are in time, and our gain is based on whether we find the answer or not, then we need to consider the ratio, e.g.

$$\frac{B_a}{C_a} vs. \frac{B_b}{C_b}$$

- The ratio that is higher, is therefore, the better decision – assumes that people want to maximize their rate of gain
- We will see that **Information Foraging Theory** uses a similar ratio (e.g. effectiveness-cost ratio) where the gain is divided by the cost.

Defining Costs and Benefits

- Costs and benefits have been referred to in a variety of ways
- **Benefit**: happiness, enjoyment, satisfaction, gain utility, expected utility, usefulness
- Cost: mental/cognitive, physical, financial, temporal
 But often time is used as a proxy for cost
- Generally the costs and benefits are considered to be common but abstracted unit.
- Estimating costs and benefits is a major challenge.

ECONOMIC / OPTIMIZATION MODELS

Optimization Models

- Provide a powerful tool for analyzing the designs of organisms, artifacts and systems.
- Key to an optimization model is:
 - an objective function,
 - Profit/utility/benefit function
 - Cost function and
 - any constraints/requirements that need to be satisfied.

Murty (2003)

Optimization Problem

• For example

- Imagine that you are studying for a test, and you have summaries, lectures, and papers.
- How much time should you spend reading through each resource type?
- It is the day before the exam, so you have about 10 hours to revise.
- Your objective is to maximize how much you know about the course.

Objective Function: what to optimize

- The objective function is a mathematical model that we want to maximize or minimize
 - i.e. Maximize the profit, for a fixed cost
 - Or minimize the cost for a given level of output
 - Thus they generally take the form of min/max some function subject to some constraints
 - The task determines the objective function that is used.

Hillier & Lieberman (2001)

Murty (2003)

Optimality and Rationality

 Optimization models often assume that human behavior is rational

- Perfect information, Infinite computational power

- However, models can be developed with more realistic assumptions of human behavior:
 - Bounded rationality
 - Satisficing which can be considered as local optimization
 Simon (1955)
 - Imperfect information and constraints

Simon (1972)

Stigler (1961)

Optimization Models

- They shouldn't be applied naively
 - But can be used to expand our understanding of the interactions
- They do not imply users are able achieve the optimal in a particular scenario/task
- Can be used to determine how well a person could perform

– i.e. how much they deviate from the optimal

2 10 200 4 Thes EP.W Vinases, Bacteria-Elizahene Decade GENERAL SUBJECTS 2 Plants' 11-140 (Superimpesed coding) MULTIN * **Fyctorica** Parazon, Coalenterate DATE FORMA COCATION Platyhelminthes, Noviertea Able X., Baker Y. 1965 and Charley Z. A Key to identification of Rhynchocephalia & roles on the ecology and physiology the New Iealand "Tuatare". Authors Year Other Accelomates Annetida -2 Crustacea 1 Irusens. TAXONOMY: 2 Myviapoda, Arachvida Other Arthropoda Reference: 2 Mollusca 20 **CRPHOLOGY** 0 Sei . Publ. Cant. Univ. , 4, 76 pp. , N.Z. Other Coelomates × -Echinodermata -**Protochordates** Vertebrata (Burbal) patentia (Jacker) General morphol, texts Suppos Ampucons : AMONOXAT & Y20JOH990M Kess Bibliogwoley, Indices

EXAMPLE User versus System
Time to spend searching?

- Cooper wondered:
 - how much time a **user** should spend searching, and
 - how much time the system should spend searching?
- (library) systems at the time were mechanized, also employed librarians, etc.
- What is the most economic division of effort b/w user and system?

User-System Interaction

- A user can choose from a range of information seeking strategies
- The user's time is an economic quantity

 i.e. cost
- The user pursues a particular strategy until the cost incurred exceeds the utility received,
 - At this point the user may choose another strategy
 - Or they stop

The trade-off

- A system needs to consider more than just matching, it also needs to consider:
 - The cost of the search to the system
 - The cost of the search to the user
 - The **benefit** to the **user**
 - The most economic division of effort between the user and the system to accomplish the user's search goals and objectives

Variables that influence cost

Time Spent

- Time spent at the console
- Time required to map request into query language
- Time waiting for system response

System Design

The design of the console, its flexibility, responsiveness, features, etc

Results Quality

- The quality of the results, their presentation, etc

- Total Cost is a combination of these factors
 - What system (or method of accessing the relevant information) is determined by a cost-benefit function.

User-System Time Trade-off Model

• Total Cost: $C_t = t_u.c_u + t_s.c_s$

tu – time user spent in seconds

cu – cost per second to the user

ts – time system spent in seconds

cs – cost per second to the system

• **P** – performance resulting from the usersystem interaction.

where

$$P = f(t_u, t_s)$$

User-System Time Trade-off Model

Optimal Division of Time

• Given the model:

$$P = t_u . t_s$$

 it is possible to determine optimal level of t_s and t_u that minimizes the total cost for a given level of performance.

• i.e. This is the objective function!

Optimal Division of Time

• Given the model: $P = t_u . t_s$

it is possible to determine optimal level of t_s and t_u that **minimizes** the **total cost** for a given level of performance.

$$T_u^* = \sqrt{\frac{P.c_s}{c_u}}$$
$$T_s^* = \sqrt{\frac{P.c_u}{c_s}}$$

Cooper (1972)

Insights from Model

- Given: $T_u^* = \sqrt{\frac{P.c_s}{c_u}}$
- If *c_s* goes up, then *t_u* goes up, while *t_s* goes down.
 - The user needs to invest more in issuing a good query
- If **P** goes up, then **t**_u and **t**_s goes up.
 - i.e. to get more relevant documents you need to search more.

All models are wrong but some are useful

George E.P. Box

Summary

- Formal models provide a way to think and reason about interaction
- Users make many choices when interacting with a system
- Designers make many choices when designing a system
 - Such choices often involve trade-offs
- Using Economic / Optimization Models focuses our attention on salient variables to draw insights about the interaction.

MORE EXAMPLE

Some search related models

- Explain why user behavior
- **Compare** different sequences of interactions
- **Reason** when certain functionality will be better than other functionality
- **Determine** how valuable the functionality needs to be for it to be used

Python	9	Search

Showing page 1

Resuts for: Python

Python - Official Site

www.python.org Official site for the interpreted, interactive, object-oriented, extensible, hydromatic, systematic programming language

[] Mark - Find Similar - Find more like these

Python (programming language) - Wikipedia

en.wikipedia.org/Python Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. Its design philosophy emphasises.. [] Mark - Find Similar - Find more like these

Leant Python - Free Interactive Python

www.learnpython.org LearnPython.org is a free interactive Python tutorial for people who want to learn Python, fast.

[] Mark - Find Similar - Find more like these

Python - Wikipedia, the free encyclopedia

Related Searches

Querying: how long should a user's query be?

Showing page 1

Resuts for: Python

Python - Official Site

www.python.org Official site for the interpreted, interactive, object-oriented, extensible, hydromatic, systematic programming language

[] Mark - Find Similar - Find more like these

Python (programming language) - Wikipedia

en.wikipedia.org/Python Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. Its design philosophy emphasises.. [] Mark - Find Similar - Find more like these

Leant Python - Free Interactive Python

www.learnpython.org LearnPython.org is a free interactive Python tutorial for people who want to learn Python, fast.

[] Mark - Find Similar - Find more like these

Python - Wikipedia, the free encyclopedia

Related Searches

dynamic programming language. Its design philosophy emphasises..

[] Mark - Find Similar - Find more like these

Leant Python - Free Interactive Python

www.learnpython.org LearnPython.org is a free interactive Python tutorial for people who want to learn Python, fast.

[] Mark - Find Similar - Find more like these

Python - Wikipedia, the free encyclopedia

Python	Search		
Resuts for: Python	Showing page 1		
Python - Official Site www.python.org Official site for the interpreted, interactive, object-oriented	Deleted Coerebee		
extensible, hydromatic, systematic programming langua [] Mark - Find Similar - Find more like these Python (programming language) - Wikipe en.wikipedia.org/Python Python is a widely used high-level, general-purpose, into dynamic programming language. Its design philosophy	Relevance Feedback: When should a user provide		
	feedback? erpreted, Python Tutorial PDF		
[] Mark - Find Similar - Find more like these	Python Wikipedia		
Leant Python - Free Interactive Python www.learnpython.org LearnPython.org is a free interactive Python tutorial for want to learn Python, fast. [] Mark - Find Similar - Find more like these	Python Snake Python for Begginners people who		
Python - Wikipedia, the free encyclopedia	a		

HOW LONG SHOULD A QUERY BE?

Or why do users pose short queries?

A Model of Query Length

- Users tend to pose short queries
- But longer queries perform better
- Many attempts to illicit longer queries
 - Instructing users
 - Longer query boxes
 - Glow boxes
- Inline query autocomplete and voice queries have meant that queries are getting longer.
- But, why?

A Model of Query Length

- What is the relationship between the benefit of a query and the length of a query?
 - W is the number of words in the query
 - The benefit **b(W)** from a query with **W** words:

$$b(W) = k \cdot \log_a(W+1)$$

- α represents how quickly benefits drops off
- *k* is a scaling factor

A Model of Query Length

• The cost of entering a query with **W** words

$$c(w) = W.c_w$$

• The profit function

$$\pi = b(W) - c(W)$$
$$= k \cdot \log_a(W+1) - W \cdot c_w$$

Trade-off between Length and Profit

Optimal Query Length

• By differentiating the profit function with respect to **W**, and solve we arrive at:

$$W^{\star} = \frac{k}{c_w \cdot \log a} - 1$$

- *W** increases, i.e. queries get longer, when:
 - C_w decreases
 - α increases i.e. diminishing returns kicks in later
 - k increases

REFORMULATE OR TAKE THE SUGGESTION?

A Model of Querying Choices

- A user enters a query into the system and the system doesn't retrieve any relevant documents ⁽²⁾
- Let's assume that this is because the query is underspecified or impoverished in some way
- Choices
 - (a) reformulate and make it more specific, or
 - (b) take a query suggestion

A Model of Querying Choices

en.wikipedia.org/Python Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. Its design philosophy emphasises.. [] Mark - Find Similar - Find more like these

Leant Python - Free Interactive Python

www.learnpython.org LearnPython.org is a free interactive Python tutorial for people who want to learn Python, fast.

[] Mark - Find Similar - Find more like these

Python - Wikipedia, the free encyclopedia on wikingdia ara/wiki/Duthan

Related Searches

Python Command List Python Basic Commands Python Definitions Python Tutorial PDF Python Code Game Python Wikipedia Python Snake Python for Begginners

Take query suggestion

A Model of Querying Choices

- *C_{q2}* cost of modifying the original query
 cost of choice (a)
- C_{es}(.) cost of examining the suggestions, which is proportional to the number of suggestions Q_s
- *P_s* probability that a suggestion exists that the user takes, otherwise they need to reformulate, anyway.
- C_c cost of taking the suggestion, cost of choice (b):

$$c_{es}(Q_s) + p_s.c_c + (1 - p_s).c_{q2}$$

Reformulate or Take Suggestion?

- If the LHS is less than the RHS, then it is better to reformulate,
- Else it is better to examine the suggestions, first.

$$c_{q2} < c_{es}(Q_s) + p_s . c_c + (1 - p_s) . c_{q2}$$

$$p_s . c_{q2} - p_s . c_c < c_{es}(Q_s)$$

$$c_{q2} - c_c < \frac{c_{es}(Q_s)}{p_s}$$

- We can see that p_s has a bigⁿ impact, and magnifies the cost of examining suggestions.
- An obvious trade-off is b/w c_{es} and p_s:
 more suggestions, greater p_s, but higher c_{es}

GIVE RELEVANCE FEEDBACK?

Issue a new query

Python

nq: issue a new query

Resuts for: Python

Showing page 1

Python - Official Site

www.python.org

Official site for the interpreted, interactive, object-oriented, extensible, hydromatic, systematic programming language

[] Mark - Find Similar - Find more like these

1

Python (programming language) - Wikipedia

en.wikipedia.org/Python

Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. Its design philosophy emphasises..

[] Mark - Find Similar - Find more like these

Leant Python - Free Interactive Python

www.learnpython.org

LearnPython.org is a free interactive Python tutorial for people who want to learn Python, fast.

[] Mark - Find Similar - Find more like these

Python - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Python

A python is a constricting snake belonging to the Python, or more, generally, any snake in the family Pythonidae (containing the Python)

[] Mark - Find Similar - Find more like these

Related Searches

A Cost Model of Issuing a New Query

$c_{nq} = c_q + N.c_a + c_q + N.c_a$

- ✓ c_q: cost of issuing a query
- ✓ c_a: avg cost of examining a document

Relevance Feedback

			_		
Python		9	Sear	ch	
Resuts for: Python		Showing page 1			
Python - Official S www.python.org Official site for the interp	ite preted, interactive, object-oriented	l,	Relate	d Searches	
extensible, hydromatic, a [] Mark - Find Similar - Python (programm	Find more like these 2	e	Python Python	Command List Basic Commands	
en.wikipedia.org/Pytho Python is a widely use dynamic programming	rf: mark which o	docs are	P. db an	Definitions Futorial PDF Code Game	
[] Mark - Find Similar	relevant and clie	ck "find m	nore	Wikipedia Snako	
Leant Python - Fi www.learnpython.org LearnPython.org is a free	like these"	Jopie mie		or Begginners	
want to learn Python, fa	st.				

[] Mark - Find Similar - Find more like these

Python - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Python A python is a constricting snake belonging to the Python, or more, generally, any snake in the family Pythonidae (containing the Python)

[] Mark - Find Similar - Find more like these

A Cost Model of Relevance Feedback

$c_{rf} = c_q + N.c_a + c_d + M.c_m + c_c + N.c_a$

- ✓ c_q: cost of issuing a query
- **7** c_a: avg cost of examining a document
- ✓ c_c: cost of click on find more like this button
- ✓ c_d: cost of deciding to mark and do RF
- c_m: cost of marking a document as relevant; M number of marked docs

When to issue a new query?

- Let's assume for now that benefits from each choice are equivalent
- Opt to issue a new query when:

$$c_{nq} < c_{rf}$$

$$2.c_q + 2.N.c_a < c_q + 2.N.c_a + c_d + M.c_m + c_c$$

$$c_q < c_d + M.c_m + c_c$$

Marking documents for RF

• We can derive the relationship with respect to **M**: the number of documents marked for RF

$$M > \frac{c_q - c_d - c_c}{c_m}$$

When to RF and when to query?

Different benefit functions

$$N^eta - N^\gamma ~>~ rac{c_q - c_d - M.c_m - c_c}{k.d(q)}$$

- **Υ**: performance of RF, β =0.5 for Q
- Issue query if LHS > RHS
- If benefit(Q) > benefit(RF), then LHS is positive
- Benefit of RF needs to be substantially greater than benefit of next query for RF to be useful i.e. Υ >> β

SUMMARY

Summary

- We have explored how we can create a variety of models based on **costs** and **benefits**.
- We've created some really simple abstracted models

 They are the starting point for more complex & realistic models
- Each model, however, highlights salient costs & benefits that are likely to effect the choices users make
 - They make **predictions** about **user behavior**
 - And suggest what we need to improve in our system for an option to be profitable

Summary

 Before any experimentation, such models provide a formal guide on how to proceed

The models provide hypothesizes about behavior

These can be used to inform design and be tested in practice

Challenges

• How do we measure the **costs and benefits**?

- How do we measure the **uncertainty**?
- And, how do we construct experiments that enable us to test the hypothesizes generated from the models?

Interaction by @leifos

Theory is not like a pair of glasses; it is rather like a pair of guns; it does not enable one to see better, but to fight better - Merquior

END OF SESSION TWO