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ABSTRACT
Pseudo-Relevance Feedback (PRF) assumes that the top results

retrieved by a �rst-stage ranker are relevant to the original query

and uses them to improve the query representation for a second

round of retrieval. This assumption however is often not correct:

some or even all of the feedback documents may be irrelevant.

Indeed, the e�ectiveness of PRF methods may well depend on the

quality of the feedback signal and thus on the e�ectiveness of the

�rst-stage ranker. This aspect however has received little attention

before.

In this paper we control the quality of the feedback signal and

measure its impact on a range of PRF methods, including traditional

bag-of-words methods (Rocchio), and dense vector-based methods

(learnt and not learnt). Our results show the important role the

quality of the feedback signal plays on the e�ectiveness of PRF

methods. Importantly, and surprisingly, our analysis reveals that

not all PRF methods are the same when dealing with feedback

signals of varying quality. These �ndings are critical to gain a

better understanding of the PRF methods and of which and when

they should be used, depending on the feedback signal quality, and

set the basis for future research in this area.
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1 INTRODUCTION AND RELATEDWORK
A key assumption in Pseudo-Relevance Feedback is that the top-k

documents used as feedback are relevant. Consider for example the

scoring formula of the popular Rocchio method [13]
1
:

®𝑞′ = 𝛼 ®𝑞 + 𝛽
1

|𝑅𝑒𝑙 |
∑

𝑑𝑖𝑖𝑛𝑅𝑒𝑙

®𝑑𝑖 (1)

where, the vectors
®𝑑𝑖 refer to the top-k documents retrieved by the

original query ®𝑞. Similar treatments are employed by other PRF

techniques, both those for bag-of-words models [1, 5, 10, 12? , 13]
and for neural models [6, 7, 18].

This assumption is often incorrect, i.e. the top-k signal often

contain irrelevant documents. Then how do PRF methods behave

in the presence of di�erent quality of the relevance signal, e.g. if

all 𝑘 documents are relevant vs. if all of them are not relevant?

And do PRF methods di�er in their behaviour when examining

signals of di�erent quality, e.g., a method that is more e�ective than

another when the relevance signal is of high quality, exhibits large

losses compared to the other method when the feedback signal

is of poor quality? These aspects have often been ignored in the

PRF literature, and there is no systematic understanding of how

PRF behaves depending on the feedback signal quality, nor how

results from methods di�er depending on the feedback quality.

However, these are important considerations to make, for a number

of reasons.

First, PRF has been shown to provide mixed e�ectiveness [1].

The factors a�ecting PRF e�ectiveness may be many, and certainly

include representation choices, PRF depth, and method-speci�c

settings (e.g., for Rocchio, these would be the weights 𝛼 and 𝛽) [14].

In addition, we posit that the feedback signal quality also plays a

fundamental role in shaping PRF’s e�ectiveness – our empirical

results reinforce this standing.

Second, PRF is often studied in the context of a standard �rst-

stage retrieval method, commonly BM25, and statements regarding

the comparative e�ectiveness of di�erent PRF methods are made

in this context. However, it is unclear whether these statements

would be valid if a stronger, or weaker, �rst-stage retrieval was

used. This is important because, in practice, many would transfer

the �ndings from such research into production systems that may

di�er in terms of the quality of the feedback signal provided to the

PRF technique.

1
The Rocchio method also has allowance for negative feedback – we removed this

here for brevity; we also note that in the PRF setting, negative feedback is often not

used.
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In this paper we provide the �rst systematic understanding of

how feedback signal quality impacts the e�ectiveness of PRF tech-

niques. We do this in the context of the Rocchio method for bag-of-

words models and of two PRF methods for dense retrievers, tech-

niques that have recently gained momentum both in the research

literature [7, 18] and in practical adoption [6].

2 METHOD
The goal of this study is to evaluate how the quality of feedback

signals a�ects the performance of PRF methods. To achieve this,

we devise two sets of di�erent experiments to control the PRF

signal from two di�erent sources. In this section, we outline how

we perform PRF with the controlled feedback signals on top of

di�erent initial retrieval methods.

2.1 Controlling the Quality of the Feedback
Signal

In all experiments, we consider three di�erent levels of quality of

the feedback signal: strong, moderate, and weak. In the experiments

we use theMSMARCO passage ranking dataset [11] and the queries

from the TRECDeep Learning Track Passage Retrieval Task 2019 [2]

(TREC DL 2019) and 2020 [3] (TREC DL 2020); detailed statistics for

these datasets are given in Table 1. Assessments in these datasets

are graded on a 4-point relevance scale – 0: irrelevant; 1:relevant; 2:

highly relevant; 3: perfectly relevant. We de�ne the feedback signal

as strong if all 𝑘 passages included in the signal have relevance

label 2 or 3. We de�ne the signal as moderate if all 𝑘 passages have

label 1; otherwise if all passages have label 0 we de�ne the signal

and being weak. For simplicity, we do not consider mixed signals,
where the relevance of the passages in the top 𝑘 varies, but it is

easy to extend this work in that direction. In terms of PRF depth

𝑘 , we study 𝑘 = 1 and 𝑘 = 3. This choice was made because the

ANCE-PRF [18] model checkpoint shared by the original author has

been created for 𝑘 = 3 and thus not optimised for higher values of

𝑘 . We also note that Yu et al. [18] investigated other depths settings

from 0 to 5 and found that the checkpoint with 𝑘 = 3 provides the

highest e�ectiveness. Furthermore, we highlight that depths values

larger than 5-6 are not possible in ANCE-PRF on the MS MARCO

corpus because the text of passages beyond those values would be

ignored by ANCE-PRF, due to the limited size of input the ANCE

encoder accepts.

We �rst consider the feedback signal obtained from a �rst-stage

retriever. As �rst stage retrievers, we consider a representative bag-

of-words method, BM25 [12], and three representative dense retriev-

ers methods, namely ANCE [16], TCTv2-HN [9], and DistillBERT-

Balanced [4]. Once the initial retrieval is performed (results up to

rank position 1,000), we �lter the results to remove all unjudged

passages. Then, we �lter once more to form three distinguished

rankings by only considering passages with labels 2 and 3 (for

strong signal), 1 (for moderate signal) and 0 (for weak signal). From

each set, we then sample 12 passages for each query; if a query

does not have 12 passages in one of the three sets (e.g., has less

than 12 passages with label 1), then the query is discarded from

all sets and ignored for the evaluation. The statistics for the result-

ing �ltered datasets are also reported in Table 1. The rationale for

choosing 12 passages is as follows. First, we recorded the number

Table 1: Statistics of the two datasets considered in our ex-
periments. The statistics of the datasets after we remove the
queries that do not have enough judged passages are labeled
with (Filtered). We use the Filtered datasets in our experi-
ments.

#Queries #Passages Avg #J/Q #Judgements

TREC DL 2019 43 8,841,823 215.3 9,260

TREC DL 2019 (Filtered) 36 8,841,823 217.7 7,838

TREC DL 2020 54 8,841,823 210.9 11,386

TREC DL 2020 (Filtered) 42 8,841,823 212.8 8,936

of judged passages for each relevant level for each query. From

this distribution we then identi�ed the smallest amount of judged

passages across any label – choosing this amount of passages in

our experiment would guarantee that every query then has the

same amount of unique passages for signal type. However, since

the depth 𝑘 values we experimented with are 1 and 3, we also need

to ensure the number of selected passages is a multiple of 1 and

3. This last requirement resulted in identifying 12 as the largest

suitable number of passages to select
2
.

When 𝑘 = 1, we use the 12 passages for each query to generate 12

runs using for each a di�erent passage from the set as the relevance

feedback signal. Then, the runs for a query are averaged and results

are reported. Thus, for each query, we have 3 main results, one

for each level of the feedback signal (i.e. strong, moderate, weak) –

each of these was obtained by averaging the results obtained from

12 instances of the corresponding signal.

The process when 𝑘 = 3 is similar, apart that, for each query,

we randomly split the 12 passages into 4 groups, each containing

3 feedback passages. For each query, we take all 4 groups, and

perform PRF, to produce 4 runs for a single query, then we average

the performance of these 4 runs to get the �nal performance of for

that query, on a speci�c level of feedback quality. Thus, for each

query, we have 3 main results, one for each level of the feedback

signal (i.e. strong, moderate, weak) – each of these was obtained by

averaging the results obtained from 4 instances of the corresponding

signal and each of these contained 3 passages.

We then repeat the settings above, but sampling passages from

the qrels
3
rather than from the baseline runs. We do this to re-

move any in�uence of a strong or weak �rst-stage retrieval on our

�ndings. Queries that were excluded before because the rankings

contained less than 12 passages of any given label are also ignored

here.

2.2 Considered PRF Methods
While there are many methods of retrieval and PRF being proposed

in the literature, in this �rst investigation we consider a subset of

these methods that allows us to understand what the impact of

2
Note: we removed 7 out of 36 queries from TREC 2019 (removed query ids: ’1124210’,

’443396’, ’855410’, ’1117099’, ’1037798’, ’1121709’, ’131843’) and 12 out of 42 queries

from TREC 2020 (removed query ids: ’1116380’, ’405163’, ’42255’, ’1105792’, ’1115210’,

’324585’, ’1131069’, ’673670’, ’336901’, ’768208’, ’1030303’, ’258062’). These queries

were removed because for each of these queries at least a label was not su�ciently

represented (i.e. less than 10 passages).

3
The �le containing the relevance assessments.



feedback quality is on PRF e�ectiveness with respect to represen-

tation type, i.e. bag-of-words vs. dense vectors, and PRF type, i.e.

learnt vs. not learnt.

Based on this, we decided to use BM25 as a representative bag-of-

words method, noting that di�erences with other methods such as

LanguageModelling are often not substantial, alongwithANCE [16],

TCTv2-HN [9], and DistillBERT-Balanced [4] as representative

dense retrievers. Note that ANCE is based on RoBERTA, TCTv2-HN

on BERT and DistillBERT-Balanced on a reduced version of BERT

(learnt with knowledge distillation), and thus do di�er to some

extent in terms of representation.

Similarly, we selected the ANCE-PRF method [18] and its exten-

sions to TCTv2-HN and DistillBERT-Balanced by Li et al. [7], as

representative learnt PRF methods. In these methods, in fact, a PRF

encoder is �ne-tuned to the relevance feedback task. We note that

bag-of-words models do not have a corresponding complex train-

able method (often tuning is performed but involves optimizing

one or a handful of parameters, not the millions of parameters in

the considered transformer-based models). We then selected the

Vector-PRF method by Li et al. [6]; speci�cally we used the Rocchio

variant of their method, which follows the general Rocchio PRF

formula of Equation 1, but where the vectors are the actual dense

representations from the dense encoders used for the �rst stage

retrieval. The parameters in these methods are only two (𝛼, 𝛽) and

we set them to the values used in previous work [6]. The method

can be applied on top of any dense retriever, and we apply it to

the 3 dense retrievers considered here. This method has an obvious

correspondence in the bag-of-words space: it’s the original Rocchio

method – thus we consider Rocchio PRF on top of BM25, rather

than the more popular RM3 method, to have a direct comparison

between bag-of-words and dense retrievers under the same PRF

strategy.

For all methods, be it bag-of-words or dense retrievers, learnt PRF

(a.k.a. ANCE-PRF and derivatives) or Vector-PRF, we use the im-

plementations available in Anserini/Pyserini [8, 17] and the check-

points made available by the corresponding authors of the tech-

niques. We implement Rocchio PRF on top of the bag-of-words

model in Pyserini and add this implementation to the GitHub repos-

itory associated with our paper
4
.

3 RESULTS
3.1 Signal Quality and PRF Methods
First, we investigate the interplay between signal quality and the

di�erent PRF methods. Table 2 reports MAP, Reciprocal Rank (RR),

nDCG@1,3,10,100, Recall@1000 (R@1000) for the e�ectiveness of

each model with di�erent PRF signal qualities. For simplicity, we

only show model e�ectiveness with PRF depth 3, since either PRF

depth 1 or 3 show similar trends.

Rocchio PRF. We use Rocchio [13] on top of the bag-of-words re-

trieval model BM25 as well as an adaptation of the Rocchio method

for dense retrievers, called Vector PRF [6]. For the dense retrievers,

we applied Vector PRF on top of ANCE, TCTV2-HN and Distill-

BERT. The parameter settings are presented in Table 3. For BM25,

the Rocchio parameters were set to 𝛼 = 0.75 and 𝛽 = 0.15, following

4
https://github.com/ielab/Noise-PRF

previous literature. For all dense methods, they were set to 𝛼 = 0.6

and 𝛽 = 0.4 on TREC DL 2019 and on 2020 (only when 𝑘 = 3) and

to 𝛼 = 0.5 and 𝛽 = 0.5 on TREC DL 2020 when 𝑘 = 1. These choices

were made based on the results from Li et al. [6].

Although somewhat tuned, then, this Rocchio PRF method was

not “learnt” (as opposed to the learnt PRF methods below).

When bag-of-words are used, the PRF signal extracted from

the �rst stage without further �ltering (uncontrolled PRF signal)

only improves R@1000 with PRF depth 1,3 and nDCG@3 with

PRF depth 1 on TREC DL 2019; nDCG@1 is on par with the BM25

baseline on TREC DL 2020; and all other metrics exhibit drops

after the use of PRF. However, when we control the quality of the

PRF signals, strong signals substantially enhance the e�ectiveness

over all metrics and datasets; moderate signals marginally improve

R@1000; weak signals hurt the e�ectiveness signi�cantly across all

metrics, with some losses even larger than 60% compared to the

BM25 baseline model.

When dense retrievers are used, the uncontrolled PRF signal

gives rise to improvements across the majority of metrics on both

datasets. With strong PRF signals, the improvements are signi�-

cant across all metrics on both datasets, except for TCTV2+VPRF-

Rocchio in nDCG@1 on TREC DL 2019 with PRF depth 3. When the

PRF signals are moderate, ANCE+VPRF-Rocchio still achieves sig-

ni�cant improvements in terms of MAP, R@1000, and nDCG@100;

for TCTV2+VPRF-Rocchio, however, e�ectiveness decreases quickly

compared to the strong signals, resulting in most metrics being now

signi�cantly worse than the baseline models on both datasets. A

similar behaviour occurs for DistilBERT+VPRF-Rocchio. When the

weak PRF signals are used, improvements in TREC DL 2019 are

observed only for R@1000 with PRF depth 3 for all three models;

improvements in TRECDL 2020 are observed only for ANCE+VPRF-

Rocchio with PRF depth 3 and TCTV2+VPRF-Rocchio with PRF

depths 1 and 3. With DistilBERT+VPRF-Rocchio in TREC DL 2020

all metrics are worse than the baseline and some losses are larger

than 40%.

Learnt PRF. We use ANCE-PRF [18] and its variants TCTV2-

PRF and DistilBERT-PRF [7] as example of learnt PRF methods on

dense representations. Bag-of-words representations do not have

an equivalent, heavily learnt PRF method.

When not controlling the quality of PRF signals, all three models

substantially improve the respective models without PRF on most

metrics across both datasets. When the PRF signals is strong, all

three models improve signi�cantly more over the baseline models

on both datasets, except TCTV2-PRF for nDCG@1 on TREC DL

2019. By using moderate signals, for all three models larger im-

provements only occur for deep metrics, such as MAP, nDCG@100,

and R@1000. For other metrics instead, e�ectiveness is either on par

or worse than the baseline models (without PRF), on both datasets.

For weak signals, marginal improvements can still be observed for

deep metrics, but these are much smaller than for other PRF signal

qualities, while losses are abundant and some are larger than 20%.

In conclusion, with strong PRF signals, Rocchio PRF approaches,

either BM25+Rocchio or Vector PRF, can improve the performance

across all metrics on both datasets. However, whenwe change to use

only moderate signals, BM25+Rocchio only can marginally improve

deep recall, where ANCE+VPRF-Rocchio is more resilient to this

https://github.com/ielab/Noise-PRF


Table 2: E�ectiveness of PRF methods across di�erent representations and PRF signal qualities. 𝑅 stands for the Rocchio PRF
method for bag-of-words, baselines are the PRF runs without control of the PRF signal quality (i.e., standard PRF on top 𝑘

retrieved documents). For each signal quality, the PRFmodels are divided into three categories: Rocchio PRF on bag-of-words,
VectorPRF-Rocchio on dense retrievers, and trained PRF on dense retrievers. Statistical signi�cance analysis is performed
using two-tailed paired Student’s ttest with Bonferroni correction; signi�cant di�erences are marked with †.

Models

TREC DL 2019 TREC DL 2020

MAP RR R@1000 nDCG@1 nDCG@3 nDCG@10 nDCG@100 MAP RR R@1000 nDCG@1 nDCG@3 nDCG@10 nDCG@100

B
a
s
e
l
i
n
e

BM25 0.2697 0.7044 0.7687 0.5972 0.5298 0.4971 0.4945 0.2870 0.6531 0.7938 0.5595 0.5155 0.4959 0.4959

ANCE 0.3908 0.8501 0.8031 0.7222 0.7022 0.6767 0.5860 0.4047 0.8275 0.7804 0.7619 0.7479 0.6806 0.5670

TCTV2-HN+ 0.4676 0.8788 0.8794 0.8009 0.7488 0.7309 0.6631 0.4047 0.8275 0.7804 0.7619 0.7479 0.6806 0.5670

DistilBERT 0.4832 0.8763 0.8905 0.7454 0.7466 0.7319 0.6698 0.4742 0.8677 0.8770 0.7778 0.7887 0.7207 0.6382

BM25+R 0.2350
†

0.6328 0.8044 0.5000
†

0.4963 0.4483 0.4318
†

0.1936
†

0.5198
†

0.7447 0.4206
†

0.4246
†

0.3864
†

0.3734
†

ANCE+VPRF-R 0.4300
†

0.8177 0.8179 0.7037 0.7023 0.6790 0.6202
†

0.4220
†

0.8377 0.7958 0.7540 0.7472 0.6841 0.5760

TCTV2+VPRF-R 0.4949
†

0.8682 0.8942 0.7917 0.7464 0.7406 0.6876 0.4904
†

0.8321 0.8655
†

0.7817 0.7592 0.7144 0.6274
†

DistilBERT+VPRF-R 0.5156
†

0.8606 0.8928 0.7731 0.7411 0.7387 0.6897 0.4974
†

0.8899 0.9101
†

0.8135 0.7973 0.7513 0.6535

ANCE-PRF 0.4423
†

0.8721 0.8293 0.7361 0.7204 0.7074 0.6270
†

0.4340
†

0.8881
†

0.8286 0.8571
†

0.7792 0.7275 0.5897

TCTV2-PRF 0.4901
†

0.8615 0.8888 0.7500 0.7606 0.7456 0.6802 0.4864
†

0.8774 0.8562
†

0.8254
†

0.8038 0.7331 0.6252
†

DistilBERT-PRF 0.4996 0.8588 0.8968 0.7546 0.7648 0.7386 0.6778 0.4860 0.8810 0.8777 0.7976 0.7803 0.7306 0.6293

S
t
r
o
n
g
S
i
g
n
a
l

BM25+R 0.3706
†

0.8334
†

0.8412 0.6505 0.6536
†

0.6076
†

0.5578
†

0.3936
†

0.8859
†

0.8422 0.7695
†

0.7040
†

0.6411
†

0.5566

ANCE+VPRF-R 0.5119
†

0.8816
†

0.8531
†

0.7708 0.7690 0.7511 0.6749
†

0.5259
†

0.9164
†

0.8377 0.8132 0.8158 0.7670
†

0.6398
†

TCTV2+VPRF-R 0.5769
†

0.9136 0.9292 0.8002 0.7957 0.7773 0.7366
†

0.6018
†

0.9484
†

0.9142
†

0.8323 0.8227 0.7925
†

0.6918
†

DistilBERT+VPRF-R 0.5931
†

0.9410 0.9336 0.7967 0.8068 0.7971 0.7433 0.6022
†

0.9738
†

0.9255 0.8462 0.8260 0.7955
†

0.7030

ANCE-PRF 0.4907
†

0.9060 0.8388 0.7986 0.7722 0.7484 0.6583
†

0.4798
†

0.8771 0.8241 0.7798 0.7685 0.7249 0.6078

TCTV2-PRF 0.5326
†

0.8807 0.9134 0.7654 0.7641 0.7600 0.7102 0.5348
†

0.9220 0.8780
†

0.8307 0.8223 0.7683
†

0.6512
†

DistilBERT-PRF 0.5408
†

0.8954 0.9124 0.7963 0.7821 0.7630 0.7041 0.5264
†

0.9082 0.8915 0.8185 0.8084 0.7542 0.6561

M
o
d
e
r
a
t
e
S
i
g
n
a
l BM25+R 0.2641 0.5738

†
0.7979 0.4842

†
0.4899 0.4871 0.4975 0.1960

†
0.3855

†
0.7956 0.3740

†
0.3821

†
0.4039

†
0.4358

†

ANCE+VPRF-R 0.4365 0.8278 0.8477 0.7161 0.6951 0.6845 0.6444 0.3541
†

0.6839
†

0.8174 0.6177
†

0.6286
†

0.6091 0.5738

TCTV2+VPRF-R 0.4675 0.7999 0.9088 0.7164
†

0.7060 0.7052 0.6861 0.3754 0.5763
†

0.8830
†

0.5321
†

0.5665
†

0.5792
†

0.6124

DistilBERT+VPRF-R 0.4847 0.8143 0.9193 0.7029 0.7049 0.7075 0.6981 0.4075
†

0.6412
†

0.8889 0.5747
†

0.6140
†

0.6440 0.6315

ANCE-PRF 0.4369
†

0.7740 0.8324 0.6620 0.6905 0.6936 0.6385 0.3703 0.6882
†

0.8143 0.6359
†

0.6409
†

0.6302 0.5627

TCTV2-PRF 0.4841 0.8550 0.8977 0.7558 0.7403 0.7338 0.6915 0.4684
†

0.8540 0.8583 0.7791 0.7545 0.7113 0.6355
†

DistilBERT-PRF 0.5049 0.8779 0.9069 0.7755 0.7472 0.7369 0.6900 0.4701 0.8215 0.8816 0.7229 0.7499 0.7018 0.6340

W
e
a
k
S
i
g
n
a
l

BM25+R 0.1957
†

0.3917
†

0.7641 0.2118
†

0.2518
†

0.2902
†

0.3643
†

0.1839
†

0.3712
†

0.7433 0.2153
†

0.2389
†

0.2866
†

0.3506
†

ANCE+VPRF-R 0.3915 0.7886 0.8130 0.6713 0.6526 0.6480 0.5836 0.3180
†

0.6949
†

0.7832 0.5575
†

0.5609
†

0.5250
†

0.4968
†

TCTV2+VPRF-R 0.4408 0.8036 0.8875 0.6921
†

0.6608 0.6692 0.6351 0.3440
†

0.5926
†

0.8352 0.4484
†

0.4785
†

0.4792
†

0.5031

DistilBERT+VPRF-R 0.4441 0.8022 0.8970 0.6667
†

0.6622
†

0.6561 0.6371 0.3904
†

0.7441
†

0.8603 0.5903
†

0.5873
†

0.5702
†

0.5555
†

ANCE-PRF 0.3929 0.7121
†

0.8159 0.5232
†

0.5733
†

0.5906
†

0.5791 0.3594 0.7185
†

0.7911 0.6181
†

0.6142
†

0.5935 0.5280

TCTV2-PRF 0.4705 0.8487 0.8890 0.7315 0.7110 0.7053 0.6582 0.4703
†

0.8827 0.8551
†

0.7748 0.7488 0.7001 0.6079

DistilBERT-PRF 0.5047 0.8757 0.9002 0.7639 0.7386 0.7262 0.6789 0.4746 0.8626 0.8747 0.7474 0.7675 0.6991 0.6213

Table 3: The Rocchio parameter settings for both datasets,
with di�erent PRF depths and di�erent models.

Depth TREC DL 2019 TREC DL 2020

BOW all

𝛼 0.75 0.75

𝛽 0.15 0.15

Dense Retrievers

1

𝛼 0.6 0.5

𝛽 0.4 0.5

3

𝛼 0.6 0.6

𝛽 0.4 0.4

change and show substantial improvements over all deep metrics,

TCTV2+VPRF-Rocchio andDistilBERT+VPRF-Rocchio, on the other

hand, also drops quickly. For usingweak signals, BM25+Rocchio suf-

fers more than 60% loss on several metrics compares to BM25, mar-

ginal improvements can be observed only for ANCE+VPRF-Rocchio

and TCTV2+VPRF-Rocchio, where DistilBERT+VPRF-Rocchio still

su�ers from substantial loss. For the learnt PRF approaches, all

three models show a more stable resilient of signal quality change,

even with weak signal, the worst performance are just about 20%

lower than the baseline.

3.2 Signal Quality and Representations
Next, we investigate how representations from di�erent models

impact e�ectiveness. For this analysis, we only consider the Roc-

chio PRF method (called Vector-PRF or VPRF-Rocchio for dense

retrievers), as this is the only PRF method for which we have both

bag-of-words and dense representations. We again refer to the

results in Table 2.

For the bag-of-words representation (BM25 + Rocchio), e�ec-

tiveness drops very quickly when moving from a strong signal to a

weak signal: losses at times reach 80% for some metrics. This trend

is observed across all datasets and metrics.

We now consider dense representations. ANCE+VPRF-Rocchio

exhibits more stable behaviour with respect to changes of feedback

signal quality than when bag-of-words are used: losses in the worst

conditions are up to only 30%. However, TCTV2+VPRF-Rocchio and

DistilBERT+VPRF-Rocchio show instead quite unstable patterns

when changing the PRF signal quality: the methods su�er losses



of more than 50% on some metrics when changing the feedback

signal from strong to weak.

Our results suggest that better underlying representations, i.e.

dense representations in place of bag-of-words representations,

lead the same PRF technique to higher e�ectiveness, and this is

regardless of the feedback signal quality. In fact, even with feedback

signal of weak quality, losses obtained by the PRF mechanism on

dense representations are lower than those obtained on bag-of-

words representations. Di�erences do still exist however across the

di�erent dense representations, at least in the extent of th relative

gains and losses depending on the quality of the PRF signal.

4 CONCLUSION
In this paper we conducted a systematic investigation of how the

feedback signal quality impacts the e�ectiveness of pseudo rele-

vance feedback for passage retrieval. We demonstrated that the

strength of the PRF signals has a high impact on e�ectiveness;

strong signals achieve higher gains in e�ectiveness, while weak sig-

nals hurt the e�ectiveness. However, we showed that the stability in

performance di�ers from one PRF method to another. For instance,

learnt PRF methods are more resilient to weak signals (noise) than

not-learnt methods (e.g. Rocchio on either bag-of-words represen-

tations or dense retrievers – called VectorPRF Rocchio). We also

showed that, under the same PRF method, dense representations

are better than bag-of-words representations across all spectrum

of feedback signal quality.

Our investigation is not without limitations. Importantly, we did

not consider mixed signals (i.e., where the relevance of passages

in the top 𝑘 varies) and a broader set of PRF depths 𝑘 . Mixed sig-

nals were not considered in this initial work so as to have a clear

control of the signals and facilitate our investigation and results

interpretations. However, in future work we plan to extend our

analysis to more complex signals, including larger samples. In terms

of feedback depth, we only studied 𝑘 = 1 and 𝑘 = 3 – although

these are often popular settings, especially for the passage retrieval

task, certainly they are not the only possible
5
. In addition, more

PRF methods could have been investigated, including other neural

PRF methods, e.g., ColBERT-PRF [15].
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5
While some dense retrieval based PRF methods are limited in terms of the maximum

number of passage they can consider as feedback [7, 18], others are not [6].
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