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ABSTRACT
Online learning to rank (OLTR) uses interaction data, such as clicks,
to dynamically update rankers. OLTR has been thought to capture
user intent change overtime – a task that is impossible for rankers
trained on statistic datasets such as in offline and counterfactual
learning to rank. However, this feature has never been demon-
strated and empirically studied, as previous work only considered
simulated online data with a single user intent, or real online data
with no explicit notion of intents and how they change over inter-
actions. In this paper, we address this gap by study the capability
of OLTR algorithms to adapt to user intent change.

Our empirical experiments show that the adaptation to intent
change does vary across OLTR methods, and is also dependent
on the amount of noise in the implicit feedback signal. This is an
important result, as it highlights that intent change adaptation
should be studied alongside online and offline performance.

Investigating how OLTR algorithms adapt to intent change is
challenging as current LTR datasets do not explicitly contain the
required intent data. Along with the main findings reported in this
paper related to intent change, we also contribute a methodology
to investigate this aspect of OLTR methods. Specifically, we create
a collection for OLTR with explicit intent change by adapting an
existing TREC collection to this task. We further introduce methods
to model and simulate click behaviour related to intent change. We
further propose novel evaluation metrics tailored to study different
aspects of how OLTR methods adapt to intent change.
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1 INTRODUCTION
Online Learning to Rank (OLTR) refers to techniques that learn a
ranker from implicit user feedback, like clicks, rather than from
explicit relevance judgements, and they do so in an online manner,
that is, by iteratively manipulating the ranking shown to users
to both provide high quality results and obtaining feedback to
further improve the ranker. Although compared to explicit rele-
vance judgements, implicit feedback presents noise and a number
of biases [13, 19, 30], OLTR methods have been shown to over-
come this problem and learn effective rankers, especially from click
feedback [14, 15, 27, 29, 35, 43]. By using implicit feedback, OLTR
provides a number of advantages compared to learning methods
based on explicitly labelled data. For example, OLTR does not re-
quire costly and lengthy relevance labels to be collected [15], and
it can be applied to scenarios where privacy is paramount [21].

In addition to advantages related to the costs and privacy of
collecting implicit relevance labels, the literature has claimed that
implicit feedback would allow OLTR to adapt to changes in intents
for users queries that occur throughout the search interactions [17,
27]. That is, for example, if a document may have been relevant to
a query few months ago, that same document may not be relevant
any more now: this may be because of temporal factors, breaking
news, or user preference changes. This change in intent would be
sensed by the OLTR ranker from the implicit feedback, e.g., click
signal, and the ranker updated to reflect such change. Although it
appears intuitive to argue for this property of OLTR methods, it
is unclear how current OLTR methods do perform with respect to
intent change, and if the level of intent change adaptability varies
across methods. This is because OLTR experiments were conducted
either by considered simulated online data with only a single user
intent, or real online data with no explicit notion of intents and how
they change over interactions. In this paper, we aim to investigate
how existing OLTR algorithms adapt to user intent change and
evaluate two aspects related to intent change – the sensitivity of
OLTR methods to intent change (nDCG_Drop@k) and the average
loss due to intent change (nDCG∆@k).

An impediment to the investigation of how OLTR adapts to
changes of intent is that there is no dataset available that explicitly
models this aspect. To overcome this, we leverage a public IR dataset
and devise a method to create an OLTR dataset for the investigation
of intent changes. In addition, we introduce two evaluation metrics
that quantify the impact changes of intent have, facilitating the
comparison of different OLTR methods.

Our investigation considers five focused research questions aimed
at understanding the role intent change has in OLTR studies. While
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previous work has claimed OLTR methods adapt to intent change,
this property has not been formally investigated. Our first research
question aims to fill this gap:
RQ1: How sensitive are OLTR methods to intent change?
How well do they adapt? To answer this research question, we
simulate intent variation during the online learning process and
measure the drop in effectiveness of the ranker when the new intent
is introduced, and whether the ranker recovers from this drop.

In practice, intent changes occur following different patterns. At
time, changes are abrupt; other times they occur over time, and two
or more intents co-exist across a common interval of interactions.
This leads to the next research question:
RQ2: How intent change patterns affect OLTR methods? To
answer this research question, we simulate different patterns of
intent change and measure how effectiveness in terms of intent
change adaptation varies across patterns.

At times, intent changes are temporal, and in particular some
are periodic [20, 25, 37, 41]. For example, a query may have intent
A for several months a year, but for a period the intent underlying
a query switches to B, for then moving back to A again. This leads
us to the next research question:
RQ3: How well does OLTR adapt to new re-occurrences of
intents already observed in past iterations, but that did not
occur in the near past? To answer this question, we simulate
variations of intent of the pattern A → B → A and measure the
difference in OLTR effectiveness between the last iteration on in-
tent A before switching to B and the first iteration on intent A after
switching back from B. We also measure the difference in effective-
ness produced by switching to B for a period of time compared to
train only on A.

Most OLTR research has been investigated with respect to simple
linear rankers. Only recently have more complex rankers, such as
neural rankers, been studied in the context of OLTR, e.g. [21, 27].
This motivates us to investigate more complex rankers with respect
to intent change:
RQ4: Do neural rankers adapt better to intent change than
simpler rankers (e.g., linear) in OLTR? To answer this, we com-
pare the results obtained for linear rankers in RQ1 with the corre-
sponding results in the same settings when using neural rankers.

It is often the case in practice that multiple intents do occur
concurrently in query logs. The experimental setup we put forward
in this paper offers us the opportunity to further investigate OLTR
effectiveness in light of the different intents underlying a query. To
demonstrate the larger applicability of our framework of investiga-
tion, we further investigate the following research question:
RQ5: How does OLTR performance vary between rankers
learnt separately per-intent vs. by combining all intents? In
other words, we explore whether it is better to have a single ranker
learnt across all intents, or a set of intent-specific rankers, if we
were equipped with reliable methods to detect intents at query time
so as to route a query to the ranker purposely learnt to setup the
specific intent for the query.

2 RELATEDWORK
In Learning to Rank (LTR) a ranker is constructed by training a
model in an off-line manner, using labelled data consisting of query-
document pairs [24]. The use of labelled data and the offline learning

process have three main drawbacks: (1) relevance judgements are
onerous to collect [5, 31, 32], both in terms of time and cost, (2)
the labelling by editors of private documents, e.g., emails, raises
privacy concerns [39], (3) this often resolves in a creation of a static
dataset which does not adapt to changes in intent for the users
queries – this may render some documents that have been labelled
relevant now, irrelevant in a future time.

In response to the limitations of traditional LTR methods, the
application of LTR to online settings (OLTR) has been considered,
where rankers are trained interactively with user interactions [40].
Unlike methods in the offline setting, OLTR controls what rank-
ings to display and updates the ranker’s weights according to the
user’s responses. This online training mechanism allows learning
algorithms to quickly adapt to changes that happen in the learning
signals. This is unlike other approaches that attempt to exploit user
clicks to train rankers in place of editorial labels, but do so still in
an offline, batch-mode manner, e.g., counterfactual LTR [1, 16].

The Dueling Bandit Gradient Descent (DBGD) [40] is a represen-
tative OLTR method. It models OLTR as a dueling bandit problem
and uses online evaluation where preference between a candidate
and the current production rankers is inferred with user clicks
on interleaved rankings. Recent works in OLTR have built upon
DBDG and online evaluation. Schuth et al. [36] introduced Multi-
leave Gradient Descent (MGD): this method replaces the interleav-
ing in DBGD with multileaving. Other extensions of this method
focus on improving efficiency and effectiveness of multileaving
comparison [26] and reduce variance of gradient estimate by online
evaluation [38]. A more recent work, called Counterfactual Online
Learning to Rank (COLTR), further suggested to replace online eval-
uation with counterfactual evaluation [43]. Since this method does
not require interleaving or multilieaving, it can evaluate a large
number of candidate rankers at each interaction time step, thus
being computationally efficient. The current state-of-the-art OLTR
method is Pairwise Differentiable Gradient Descent (PDGD) [27].
Instead of estimating gradient updates from a pool of candidate
rankers, PDGD directly estimates gradients based on document pair
preferences inferred from user clicks. Empirical results have shown
that PDGD significantly outperforms DBDG based methods [27, 28].
It is important to note that, instead of conducting experiments with
real-world users, all research mentioned above has evaluated OLTR
methods using synthetic user interaction data. In such an approach,
user clicks are generated based on the relevance labels recorded in
existing offline LTR datasets. However, relevance labels in those
datasets are collected from adhoc search tasks, and thus exhibiting
a single intent per query. Thus, existing OLTR methods have been
evaluated assuming the presence of a single intent, and the effect
of intent change on OLTR has so far been ignored.

Previous work that examined intents in offline LTR has done so
in the context of search result diversification [33, 34, 42] and fresh
intent detection [10, 22]. A recent OLTR method has been proposed
for search engine result diversification [23].

3 DATASET FOR INTENT CHANGE
In this section, we discuss our framework for studying intent change
in OLTR. This consists of (1) a dataset of query-document pairs for
which feature representations are computed to be used for rank-
ing, coupled with indications of multiple intents for each queries
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Table 1: Average number of relevant documents per intent
before re-balancing.

intent id 1 2 3 4

Avg. rel per query 71.6 52.0 42.0 26.4

Table 2: Instantiations of the SDBN click model.

p(c = 1 |r el (d )) p(s = 1 |r el (d ))

r el (d ) 0 1 0 1

perfect 0.0 1.0 0.0 0.0
navigational 0.05 0.95 0.2 0.9
informational 0.3 0.7 0.1 0.5

and relevance assessments tailored to intents (Section 3.1), (2) a
mechanism to simulate clicks (Section 3.2), and (3) mechanisms to
simulate changes in intents (Section 3.3).

3.1 Dataset for LTR
There is no available dataset for OLTR that explicitly records in-
tents for users queries and that presents changes of intent across
interactions for the same query. Currently available OLTR datasets
consist of query-document pairs with associated feature vectors
and relevance labels that are used to train the rankers: a click model
is applied to simulate clicks based on the relevance labels and rank-
ings. We set to create one such dataset, but which does explicitly
encode an array of intents for each query.

The TREC Web Track 2009 to 2012 collection does provide a
large set of web pages (ClueWeb09) along with 200 queries [8]. The
diversity task in this TREC track provides for each query an array of
intent descriptions, ranging from 4 intents up to 10 intents. Further-
more, query-document pairs relevance judgements are provided
per-intent. This provides a good collection from which to derive
an OLTR collection for intent change because intents are explicitly
defined and relevance judgements are provided with respect to the
intents. We note that TREC collections have been used before in
the context of OLTR research [32], while ClueWeb09 has been used
for LTR research [2, 12] but not for OLTR.

To use Clueweb09 in OLTR experiments, we generated features
for query-document pairs to be used in the LTR process. For this,
we rely on existing features like PageRank and the Waterloo spam
scores [9], and we create a feature extraction pipeline to generate
other common LTR features, e.g. field-based BM25 scores, TF-IDF
scores, URL length, query length, etc.. Each query-document pair
in our dataset is represented by 105 features; the full feature de-
scription along with code for the feature generation pipeline can
be found at https://github.com/ielab/OLTR-intent-change.

The TREC diversity track data we use to define our intents pro-
vides a different number of intents per query, but all queries have a
minimum of 4 intents. To simplify the settings of our experiments,
then, for each query we select the first four intents as defined in the
TREC files, so that all queries in the dataset for OLTR have the same
number of intents. Then, we collate all documents that have an
explicit relevance judgement for at least one of the selected intents
for a query, and compute their feature representation with respect
to the give query. Note that, for a given query, a document may
be relevant to more than one intent: this however does not affect
the feature representation as we use a mix of query dependent and
query independent features, but no feature is intent dependent. The

created dataset consists of 200 queries with 4 intents each and on
average 512 candidate documents per query. Table 1 reports the
average number of relevant documents per query for across the
selected intents. We observe that the average number of relevant
documents per intent varies largely across intents: for example,
intent 4 has less than half the number of relevant documents than
intent 1. Because of this distribution of relevance labels, optimizing
a ranker for intent 4 may be a harder task compared to optimizing
it for intent 1. To avoid this bias, for each query we re-label the
original intent number by randomly assign it a new intent id. This
is possible because intents are dependent across documents, but
independent across queries. This trick ensures that the relevance is
consistent across an intent for a query, but balances the number of
relevant documents per intent id across the dataset. In our experi-
ments, we shall repeat this process of re-balancing 25 times, thus
giving rise to 25 OLTR experiments, for which results are averaged.

3.2 Synthetic click pattern generation
Using a LTR dataset with heuristically initialized click models to
simulate user clicks is the standard experimental setting used in
OLTR [7]. We follow the same procedure (with the difference that
for us clicks are dependent also on intents, more on this in Sec-
tion 3.3). First, a query is uniformly sampled from the dataset along
with its candidate document set. Then, the OLTR method generates
a ranking list based on its current model parameters. User click
behaviour on this ranking is then simulated by the click model.
Finally, the learning algorithm updates the ranking function ac-
cording to the observed clicks. This experimental pipeline allows
to avoid testing OLTR methods on real-world users by replacing
users with click models. In addition, user click behaviour can be
controlled using different click models.

We use the Simplified Dynamic Bayesian Network (SDBN) click
model [6] to simulate clicks (click labels): this is a standard click
model used extensively in OLTR [14, 15, 27, 29, 35, 38, 43] and
allows for clear control of the point when intent change occurs.
Alternative click models, like neural click models [3, 4] might better
fit users’ click behaviour, however it is unclear how they can be
used in a controlled manner to control for intent change. In addition,
these models require to initialize all parameters from scratch, a task
typically done using existing logs: but logs with an explicit account
of intent change do not currently exist.

SDBN assumes users always exam documents in the ranking list
from top to bottom and decide whether to click on an observed
document d with a probability P(c = 1|rel(d)) where rel(d) is the
relevance label for documentd in the LTR dataset. After a document
is clicked, the user may decide to stop the search session with
a certain probability P(s = 1|rel(d)). This click model has been
shown to perform well in the task of click prediction for web search,
suggesting it reasonably models real-world user click behaviour [7].
Table 2 reports the values for the SDBN click model parameters. We
consider three click settings: perfect (no noise), navigational and
informational (noisiest click model). These settings are in line with
previous work on OLTR. According to the perfect click model, users
examine all documents provided in the ranking list, always click
on relevant documents and never click on non-relevant documents.
Thus, the perfect click model omits click noise, allowing us to
investigate the performance of OLTR algorithms under a perfect
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relevance environment. The navigational instance, which refers to
the navigational search task, models users who are seeking for a
particular relevant document. In this setting, high probability is
assigned to the user stopping the search session after finding a high
relevant document. Finally, the informational click setting models
a user searching for an an array of information regarding a topic:
in this settings clicks are noisy and there is a lower probability of
stopping after encountering a relevant document, compared with
the navigational setting. As per typical OLTR practice, we only
present 10 documents in the ranking list to collect click data: this
setting introduces selection bias in the OLTR process.
3.3 Non-stationary intent environment and

synthetic intent change
Previous work on OLTR has either assumed a stationary intent
environment, i.e., without intent change, e.g., using the LETOR
4.0 dataset [32], or has relied on datasets released by web search
engines that may have exhibited a non-stationary intent environ-
ment, but intents were not explicitly captured and thus neither the
stationariness of the environment can be determined nor OLTR
can be studied in presence of intent changes. Our dataset instead
contains explicit per-intent query-document relevance labels, but
it lacks how intents are distributed over interactions. For this, we
define five non-stationary user intent environments.

The non-stationary user intent environments used here influence
the relevance of a document to a query: documents are regarded rel-
evant if they are relevant to the intent associated to the query being
used at the specific interaction. Formally, the relevance of a docu-
ment d to a given query is decided by reli (d) where i ∈ {1, 2, 3, 4}
is the intent label. Consequently these intent environments also
influence thee synthetic clicks generated by the settings specified
in Section 3.2. Specifically when simulating user clicks with respect
to intents, if reli (d) , reli+1(d), then if the current intent changes
from i to i + 1 (intent change), then also reli (d) will change to
reli+1(d), and so will change the click probability for document d
as the click probability depends on the relevance label.

Since we use click models to simulate clicks, we have control on
when intents change. We model the current intent I as a random
variable with value i decided by a discrete probability distribution
Pt (I = i), where

∑
i Pt (I = i) = 1, i is the intent label, and t is the

time step. Before the user issues a query at a time step t , we sample
the user intent label i according to Pt . Then user clicks on the SERP
are generated with respect to the sampled intent. Next, we describe
the five non-stationary user intent environments used in this work.

Abrupt change: In this environment, we only use one intent at
the time to simulate clicks and change from an intent to another
abruptly at some point in the interaction history. At any one point
in time, only one intent is used. For example, we only use intent 1
to simulate user clicks at the start of the process; we then suddenly
change to intent 2 after n query interactions. While this intent
environment unlikely to occur in practice, as it requires all users
to switch intent for the same query at a given point in time, it is
a simple and controlled environment in which to investigate how
OLTR algorithms adapt to intent change.

For this environment, we set an intent change time point c so
that, at time step t < c , the sampling probability for the current
intent i is equal to 1 (Pt<c (I = i) = 1) and that of other intents is

equal to 0 (Pt<c (I , i) = 0). This means we only sample intent i
before the time step c . At time step c , we change the current intent
i to i + 1 by setting Pt ≥c (I = i + 1) = 1 and Pt ≥c (I , i + 1) = 0.

Smooth abrupt change: In this environment, we consider that
at any one given point in time all available intents are possible, but
with different probability. In particular, for each time period we set
a specific intent to dominate, i.e., be more likely to occur, while the
remaining intents can occur but with a low probability. After the
period is concluded, there is an abrupt change in the dominating
intent. This environment aims to simulate the situation in which,
for example, a breaking news leads to a large change in intent for
the majority of the users, but a small proportion of users main-
tain their intent unchanged. For this intent change environment,
before the change point c , we set intent sampling probability for
the dominating intent i to Pt<c (I = i) = 0.7 and for the other
intents to Pt<c (I , i) = 0.1. After the dominating intent changes
to i + 1, the sampling probabilities become Pt ≥c (I = i + 1) = 0.7
and Pt ≥c (I , i + 1) = 0.1.

Intent leaking: Another possible type of intent change is that
a user’s intent gradually changes over time to another – this long-
term behaviour models the great majority of intent changes oc-
curring on the Web. To test OLTR methods on this type of intent
change environment, we introduce an intent leaking mechanism
where we linearly decrease the proportion of the dominating intent
and linearly increase the proportion assigned to another intent un-
til eventually it dominates. Unlike the aforementioned two intent
change environments, in this setup, intents change only a little bit af-
ter each interaction (time step) and never change abruptly. Tomodel
the intent leaking environment, instead of an abrupt changing point,
the sampling probability of the dominating intent linearly “leaks”
to another intent at each time step. To achieve this, we set a leaking
rate η for this environment where Pt+1(I = i) = Pt (I = i) − η and
Pt+1(I = i + 1) = Pt (I = i + 1) + η.

Abrupt Swap: This is a special abrupt change environment
where we only consider two intents (for simplicity, although we
could have considered more intents) and intent changes occur re-
peatedly across these two intents. In this type of environment, we
aim to investigate how OLTR algorithms adapt to an intent that has
been already observed before in a different period in the historical
click log. This environment simulates period intents associated
with a query. This intent change mechanism is formally expressed
as the abrupt intent change, except that the intent changes from i
to i + 1 and then back to i .

Mixed Intents: In realWeb data, it is often the case that multiple
intents occur within the same time period. To test OLTR methods
in presence of mixed intents, we uniformly sample intents for each
query during training. Changes of intents occur throughout. For
this, we uniformally set the sampling probability for all intents
to 0.25 throughout training (all intents have equal chance to be
sampled at any time step).

4 INTENT CHANGE EVALUATIONMEASURES
To measure the performance of OLTR methods at any time step,
we use the relevance judgments of the current intent and measure
the nDCG@10 obtained by the learned rankers over all observed
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queries during training. This evaluation is referred to as offline per-
formance [15]. In order to investigate the impact of intent change,
we also report the offline performance of rankers that have been
trained under a stationary user intent environment. Note that, for
measuring the offline performance, we are not using a held-out
unseen test set to evaluate rankers. This is because intents are
independent for different queries: this means there is no correla-
tion for the same intent label between two different queries, and
thus rankers’ performance on unseen queries for an intent label
are not necessarily aligned with the same intent label of queries
observed during training. In addition to the offline performance, we
also consider user experience during training. We evaluate this by
averaging the nDCG@10 values of the displayed rankings during
training. This is referred to as online performance [15].

The evaluation metrics mentioned above are standard OLTR
metrics; however, they do not provide a clear picture of the impact
of intent change on the OLTR methods‘ effectiveness. To address
this, we devise two evaluation metrics for OLTR tailored to measure
impact on effectiveness due to intent changes; these metrics are
the immediate drop due to intent change (nDCG_Drop@k) and the
average long-term loss in effectiveness (nDCG∆@k).

Specifically, (normalised) nDCG_Drop@k evaluates the immedi-
ate sensitivity of OLTR methods to intent change:

nDCG_Drop@k =
max(nDCG@k(θt=c−1) − nDCG@k(θt=c ), 0)

nDCG@k(θt=c−1)
(1)

where c is the intent change point, and θt is the ranker at time
step t . This evaluation metric computes the difference in nDCG
between that obtained by the ranker at the time step in which
intent change occurred (point c) and that obtain at the time step
immediately before the intent change. Intuitively, we expect that
the nDCG score of the ranker will suddenly drop at the time step in
which intent change occurs. Larger drops indicate that the ranker
is affect by intent change more (larger nDCG_Drop@k). The max
function is used to maintain the drop value not negative (in the
unlikely case of a gain).

(normalised) nDCG∆@k , instead, aims to measure the average
loss of the ranker due to intent change:

nDCG∆@k =
1
T

T∑
t ≥c

max(nDCG@k(θ
(i)
t ) − nDCG@k(θt ), 0)

nDCG@k(θ
(i)
t )

(2)

where i is the intent after intent change, and θ (i)t is the ranker
at time step t trained under the stationary intent i (i.e. a ranker
that has undergone as many iterations but that has only observed
clicks with respect to intent i , that is, without experiencing intent
change). The nDCG value of θ (i)t can be considered as the skyline
of the nDCG value of θt at time t , since θ (i) has never been affected
by intent change. The max function keeps losses not negative. The
final score represents the average normalized loss across all time
steps. It is important to note that, being a loss, the smaller the value
of nDCG∆@k , the better.

nDCG∆@k is based on the following intuition: After intent
change occurs, the distribution of relevant documents for each
query changes suddenly, thus the offline performance of the cur-
rent ranker (nDCG@k(θt )) is likely to drop suddenly. This drop
however will not occur for the ranker that is trained with a fixed

intent (stationary). If an OLTR method can rapidly adapt to changes
intents, then nDCG@k(θt ) should increase after each time step sub-
sequent to an intent change, and eventually match nDCG@k(θ

(i)
t )

– in other words, losses should approach zero.

5 COMMON EXPERIMENT SETTINGS
OLTR methods. We investigate the impact intent change has on
OLTR using three representative OLTR methods. The first method
we consider is Dual Bandit Gradient Descent (DBGD) [18]. This is a
popular OLTR method that uses interleaving for online evaluation.
For this method, we use the same parameters settings reported
in previous work [29], where the step size is set to δ = 1 and
the learning rate to α = 0.01. The second baseline is the recently
proposedCounterfactual Online Learning to Rank (COLTR) [43]. This
method replaces online evaluation with counterfactual evaluation,
delivering a large improvement in effectiveness over DBGD. For
COLTR we use the best parameter settings reported in the original
paper [43]. The third method is Pairwise Differentiable Gradient
Descent (PDGD) [27] which is currently the state-of-the-art OLTR
algorithm. For PDGD, we set the learning rate to α = 0.1. Except
for RQ4, we use these OLTR methods to train a linear ranker. While
these methods have been thoroughly compared in previous OLTR
work [14, 15, 18, 27, 29, 35, 36, 38, 43], they have never been studied
with respect to non-stationary environments (intent change).
Intent changes. In Section 3.3 we have defined five different non-
stationary intent environments. Unless indicated differently, we
set the intent change environments as follows. Abrupt change and
abrupt swap are characterised by the sampling probability for the
current intent i , which is set to Pt<c (I = i) = 1, and that of other
intents, which is set to Pt<c (I , i) = 0. For smooth abrupt change,
we set intent sampling probability for the dominating intent i to
Pt<c (I = i) = 0.7 and for the other intents to Pt<c (I , i) = 0.1
before the change in intent from i to i + 1 occurs (time step c). After
the dominating intent changes to i + 1, we set Pt ≥c (I = i + 1) = 0.7
and Pt ≥c (I , i + 1) = 0.1. Intent leaking is characterised by the
leaking rate η, which we set to 0.6/50, 000, i.e., 60% of the current
intent will be leaked to the next intent over 50,000 impressions. For
mixed intents, we uniformally sample intents with a 0.25 probability
throughout the OLTR process.

For all intent change configurations we consider four intents.
Unless differently indicated, we set the duration of an intent to
50,000 consecutive query interactions (time steps). This configura-
tion allows OLTR methods to converge at a stable level before any
intent change occurs.
Runs repetition and statistical analysis. All experiments are repeated
25 times with different random seeds. Results are averaged and a
paired, two-tailed Student’s t-test is used for significance testing.

6 RESULTS AND ANALYSIS
6.1 OLTR Sensitivity to intent change
To answer RQ1, we use the abrupt intent change setting, as we are
interested in how the methods considered in this study (DBGD,
COLTR, PDGD) perform under extreme intent change conditions.

Figure 1 compares the learning curves for offline nDCG@10
for three different click settings. When the perfect click setting
is used (no click noise), there are sudden drops in effectiveness
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Table 3: nDCG_Drop@10 for the considered OLTR methods:
the lower the loss value, the better. Three intent change
points are evaluated. Significant losses for PDGD over other
methods are indicated by † (p < 0.01).

Method c1 c2 c3

DBGD 0.035 0.027 0.025
Perfect COLTR 0.035 0.028 0.025

PDGD 0.070† 0.067† 0.049†

DBGD 0.034 0.042 0.023
Navig. COLTR 0.032 0.024 0.022

PDGD 0.062† 0.073† 0.043†

DBGD 0.034 0.034 0.016
Inform. COLTR 0.029 0.027 0.018

PDGD 0.039† 0.038† 0.036†

associated to each intent change point. Rankers then gradually
adapt to the new intent (past the abrupt change). This behaviour is
observed for every OLTR method. However, when the navigational
and informational click settings is used, this trend becomes less
stark for PDGD and largely vanishes for DBGD and COLTR.

The nDCG_Drop@10 values in Table 3 further confirm these
observations. Values for PDGD are much higher than those for
BDGD and COLTR, across all click settings.

These observations suggest that PDGD is affected by intent
change more than the other methods. This is because PDGD can
quickly and very effectively train the ranker to fit a specific intent
(as suggested by the high nDCG@10 values). Thus, when the intent
changes, the ranker learnt with PDGD does not generalize well to
the new intent, exhibiting a large drop in performance.

Nevertheless, even if PDGD is affected by intent change the
most, its performance still remains higher than that of the other
methods also in presence of intent change (although differences
between PDGC and COLTR are less remarkable for navigational
and informational settings). In fact, while PDGD almost always
outperforms DBGD and COLTR, COLTR is more competitive under
noisy click settings. These results are in agreement with the findings
from Zhuang and Zuccon [43]. With this respect, Table 4 reports the
online nDCG@10 scores of the methods within each intent period.
PDGD significantly outperforms the other methods, indicating it
provides the best user experience. Surprisingly, although COLTR
has much better offline nDCG curves than DBGD when noisy clicks
are used, the online performance is worse.

In summary, for RQ1 we conclude that, when the perfect clicks
setting is used, OLTR methods are more sensitive to intent changes
than when noisy clicks are present. On the other hand, the state-
of-the-art OLTR method, PDGD, is much more sensitive than the
other methods, although it also has the best performance in terms
of offline and online nDCG.

Given the positive results obtained with PDGD, for the next
research questions, we only report results related to PDGD.

6.2 Impact of intent change patterns
To answer RQ2, we consider the nDCG∆@10 values obtained by
PDGD under the abrupt change, smooth abrupt change and intent
leaking non-stationary intent environments. We also compare the
learning curves obtained by the ranker trained using the current
intent with that of the ranker trained by maintaining a fixed intents

Table 4: Online nDCG@10. Significant gains for PDGD over
other methods are indicated by † (p < 0.01).

Method intent1 intent2 intent3 intent4

DBGD 0.280 0.303 0.315 0.318
Perfect COLTR 0.329 0.330 0.337 0.339

PDGD 0.354† 0.357† 0.361† 0.363†

DBGD 0.246 0.270 0.281 0.286
Navig. COLTR 0.265 0.271 0.279 0.283

PDGD 0.306† 0.317† 0.322† 0.325†

DBGD 0.226 0.260 0.271 0.276
Inform. COLTR 0.226 0.239 0.247 0.252

PDGD 0.322† 0.314† 0.328† 0.332†

throughout all iterations performed so far. The latter is a ranker that
has never been exposed to changes on intent. For fair comparison,
we use the same random seed for each runs, so that the queries the
rankers observe are the same.

Figure 2 compares the offline nDCG learning curves across dif-
ferent intent change environments and click settings. For rankers
trained with fixed intents, we only plot the curve obtained within
the intent period their intent refers to.

From the figure, we observe that the drop in performance at
each intent change point is less abrupt when more noisy clicks are
present: this is valid across all intent change environments. This can
be explained as follows: noisy clicks are likely to make PDGD fitting
a particular intent less well, but at the same time providing higher
generalizability across intents. This finding aligns with the results
of Section 6.1. In addition, we observe that the size of the drops
is smaller when the smooth abrupt change environment is used;
and no obvious drop is observed for intent leaking. This finding is
expected: in both settings all intents have a chance of being selected
at any time, and thus the change in click pattern that occurs at a
change point is less sudden.

Although the learning curves always increase after an intent
change, rankers trained in the intent change environments always
perform worse than rankers trained with fixed intents.

In summary, for RQ2, we found that for perfect clicks and abrupt
intent change, the effect of intent change is substantial (large drops
of performance). However, this effect is less remarked for noisy
click settings and smoother intent change environments.

6.3 Adaptation to new intent re-occurrences
To answer RQ3, we consider experiments performed using the
abrupt swap environment. We aim to investigate how well PDGD
adapts to a newly occurring intent given enough training steps,
and how well it adapts to an intent it has observed before.

We consider a long-term intent swap and a short-term intent
swap. For the long-term intent swap, we change the intent changes
from intent1 in the first period to intent2 in the second and then
again to intent1 in the third period. To ensure that the ranker cov-
erages after each change, we set the number of iterations between
two change points to 500,000.

For the short-term intent swap, we again switch intent between
intent1 and intent2, but we repeat this change for five times, each
time after 50,000 iterations. This also allows us to investigate how
PDGD performs when frequent periodic intent changes occur.
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Figure 1: Offline nDCG learning curves in the abrupt change intent environment and for different click settings.

Figure 2: Offline nDCG@10 for PDGD under fixed intents vs. different intent change environments: abrupt change (first row),
smooth abrupt change (second row), and intent leaking (third row).

Figure 3 compares the learning curves for the long-term swap
experiments. With navigational and informational clicks, PDGD
fails to adapt and reach the same performance as the ranker trained
with fixed intent. However, with perfect clicks, PDGD can adapt
well and converge to the same level as the ranker trained with fixed
intent for the intent that it observed first (i.e., intent1).

A similar finding is present also in the short-term experiments,
shown in Figure 4. PDGD appears to perform better for the intent
that is first observed at the start of training. To confirm this, we
calculate nDCG∆@10 for each intent period in the short-term runs:
the results are reported in Table 5. From the table, it is clear that
the performance of PDGD adapting to intent2 is always worse than
that obtained when adapting to intent1. It is important to note that
these results still hold after experiments are ran such that intent2
is the first intent and intent1 is the second: in this case, PDGD
performs better for intent2.

In summary, for RQ3, we find that PDGD adapts better for the
first training intent. When given enough perfect clicks, despite the

intent changes, PDGD can even achieve the same performance of
the ranker trained with the fixed intent. However, PDGD adapts
worse to multiple repetition of the second observed intent.

6.4 Neural vs. Simpler Rankers
A common perception with neural rankers is that they require
more training samples than linear rankers to perform well because
they have more parameters needing to be trained. Thus, in the
context of non-stationary environments like that of our intent
change framework, we would expect neural rankers to adapt worse
than simpler linear rankers to intent change.

To answer RQ4, we use PDGD to train a neural ranker with
two hidden layers (64 hidden units), following the original PDGD
work [27]. The offline nDCG learning curve of the neural and linear
rankers are compared in Figure 5. As training begins (intent 1), the
linear ranker learns faster than the neural ranker, thus matching our
expectation above that neural rankers requiremore data for training.
However, for intents past the first, and regardless of changes in
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Figure 3: Long-term offline NDCG for PDGD when abrupt intent swap is considered and across different click settings.

Figure 4: Short-term offline NDCG for PDGD when abrupt intent swap is considered and across different click settings.

intents, the neural ranker converges at a higher score than the
linear ranker when the perfect click setting is used. When other
click settings are used, the neural ranker converges at the same
level of the linear ranker. Figure 6 further compares the same neural
ranker trained when intent change occurs vs. when intents have
been fixed throughout all iterations. This result shows that, except
for the perfect click setting, the neural ranker is only minimally
affected by intent change.

In summary, we found that neural rankers are less affected by
intent changes than simpler linear rankers, and they adapt to intent
change best when no click noise is present.

6.5 Per-Intent vs. Combination Learning
To answer RQ5, we create a mixed intent environment with four
randomly sampled intents. We use PDGD to train a single ranker
and four intent-specific rankers learnt separately according to the
intents sampled at each time step. Note that the number of training
examples for the single ranker is four times larger than that of
the intent-specific rankers: this is because only one intent-specific
ranker has been trained at each time step. When reporting offline
nDCG at each time step, we assume that we know which intent
occurred at each time step and we compare the performance of the
single ranker against the intent-specific ranker for that time step.

Figure 7 compares the offline nDCG learning curves during 2
million iterations. The single ranker outperforms the intent-specific
rankers at the early stage of training across all click settings. How-
ever, for perfect and navigational click settings, intent-specific
rankers surpass the single ranker very quickly; the speed becomes
much slower when noisy clicks are used.

Table 6 further reports the online nDCG scores of the single
ranker and intent-specific rankers. The user experience aligns with
the offline nDCG learning curves shown in Figure 7, except for
navigational clicks: although the intent-specific rankers outperform
the single ranker in terms of offline nDCG, no statistical differences
are found for online nDCG.

Table 5: nDCG∆@10 of PDGD under short-term abrupt swap.

intent1 intent2 intent1 intent2 intent1 intent2

Perfect 0.0 0.043 0.030 0.044 0.031 0.044

Navig. 0.0 0.046 0.031 0.046 0.028 0.045

Inform. 0.0 0.035 0.034 0.039 0.031 0.045

Table 6: Online nDCG@10 of PDGD for single ranker vs.
intent-specific rankers. †: significant gains (p < 0.01)

Click setting single intent-specific

Perfect 0.371 0.375†

Navigational 0.334 0.332

Informational 0.346† 0.337

In summary, for RQ5, we found that, given limited iterations and
when the perfect click setting is used, OLTR performs better with
rankers trained specifically on different intents. However, when the
informational click setting is used, the ranker trained with mixed
intents performs best. In our experiments we assumed a perfect
intent predictor was available; this is unlike to be the case in reality
and thus the advantage of intent-specific rankers is likely limited.

7 CONCLUSIONS
Adapting to changes in the intents that underlay a user’s query
(non-stationary relevance assessments) is one of the key benefits
put forward by online LTR. However, the extent to which OLTR
methods adapt to such intent changes, and whether methods differ
in how well they adapt, has not been investigated so far. In this
paper we perform the first, thorough investigation of the impact of
intent change on OLTR performance.

Current OLTR studies use static offline LTR datasets to synthet-
ically generate user click data and do not have an explicit notion
of intents and non-stationary relevance. In this way, they either
consider truly stationary environments (as is for those datasets



How do Online Learning to Rank Methods Adapt to Changes of Intent? SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

Figure 5: Offline nDCG learning curves for neural ranker vs. linear ranker under PDGD.

Figure 6: Offline nDCG learning curves for neural ranker under PDGD.

Figure 7: Offline nDCG learning curves for PDGD under mixed intent vs intent-aware.

based on TREC data [32]), or consider environments that may have
exhibited non-stationary relevance, but this has not explicitly cap-
tured and modelled (as is for current web based datasets like iStella
or Yahoo [5, 11]). Thus, these datasets cannot be used to simulate
and study the effect of intent change on OLTR methods.

To study OLTR methods under synthetic intent change environ-
ments, we construct an OLTR dataset in which intents are explicitly
associated to queries and relevance labels are provided with respect
to intents. We then design 5 different synthetic non-stationary in-
tent change environments so to investigate the performance of
OLTR methods under extreme conditions and real-world scenarios.
We further propose two novel evaluation metrics to better quan-
tify the effect of intent change: nDCG_Drop@k for measuring how
sensitive OLTR methods are to intent change, and nDCG∆@k for
measuring the average loss of rankers due to intent change.

Our experimental results demonstrate that OLTR methods have
the ability to adapt to intent changes and non-stationary environ-
ments; however, their performance is affected. In particular, we find
that OLTR methods exhibits different levels of sensitivity to intent
change. The state-of-the-art PDGD is the most sensitive to intent
change, but it also performs best compared to the other methods,
even after the intent has changed. The investigation of different
synthetic intent change environments shows that the sensitivity
of OLTR varies across different non-stationary scenarios. OLTR

methods usually cannot adapt well and rapidly to a new, fresh in-
tent, thus not matching the performance the ranker would have
obtained if trained with that intent since the start.

Our study is not without limitations. Because of the limited size
of the underlying collection we used in our experiments, the TREC
diversity task, we could only rely on 200 unique queries: a limited
number compared with modern LTR datasets [5, 11], but larger
than the initial datasets used in LTR. However, there are currently
no datasets with intent change for OLTR and we thus believe our
work provides the first stepping stone for studying this problem.

On the other hand, because the intents of different queries are
independent, we could only evaluate rankers on queries that were
observed during training. As a result, rankers may overfit training
queries, and it is unclear how OLTR would adapt to intent change
for unseen queries. Similarly, more complex intent change environ-
ments could be considered, e.g. simulated through Markov chains.
Although worthwhile for future work, we believe our current set-
ting strikes the balance between being grounded on previous work
(SDBN used throughout OLTR literature) and allowing for the care-
ful control of the impact of intent change on OLTR. In light of
the results reported in this paper, these limitations provide the
motivation for creating large scale LTR collections that explicitly
encompass intent information.
Acknowledgement. Dr Guido Zuccon is the recipient of Australian Re-
search Council DECRA Research Fellowship DE180101579.
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