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ABSTRACT
Current methods for evaluating search strategies and automated

citation screening of systematic literature reviews typically rely

on counting the number of relevant publications (i.e. those to be

included in the review) and not relevant publications (i.e. those to

be excluded). Significant importance is put into promoting the re-

trieval of all relevant publications through great attention to recall-

orientedmeasures, and demoting the retrieval of non-relevant publi-

cations through precision-oriented or cost metrics. This established

practice, however, does not accurately reflect the reality of conduct-

ing a systematic review, because not all included publications have

the same influence on the final outcome of the systematic review.

More specifically, if an important publication gets excluded or in-

cluded, this might significantly change the overall review outcome,

while not including or excluding less influential studies may only

have a limited impact. However, in terms of evaluation measures, all

inclusion and exclusion decisions are treated equally and, therefore,

failing to retrieve publications with little to no impact on the review

outcome leads to the same decrease in recall as failing to retrieve

crucial publications.

We propose a new evaluation framework that takes into account

the impact of the reported study on the overall systematic review

outcome. We demonstrate the framework by extracting review

meta-analysis data and estimating outcome effects using predic-

tions from ranking runs on systematic reviews of interventions

from CLEF TAR 2019 shared task. We further measure how closely

the obtained outcomes are to the outcomes of the original review if

the arbitrary rankings were used. We evaluate 74 runs using the

proposed framework and compare the results with those obtained

using standard IR measures. We find that accounting for the dif-

ference in review outcomes leads to a different assessment of the

quality of a system than if traditional evaluation measures were

used. Our analysis provides new insights into the evaluation of

retrieval results in the context of systematic review automation,

emphasising the importance of assessing the usefulness of each

document beyond binary relevance.
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1 INTRODUCTION
A systematic literature review is a well-established and rigorous

methodology for synthesising and evaluating the evidence on a

specific research question, which is particularly important in the

field of medicine [13]. However, it is also gaining importance in

other areas such as social sciences and engineering [2, 3, 17, 28].

The process involves a systematic search, critical appraisal, and

synthesis of the available literature on a topic. During the critical

appraisal step, every included publication has its weight and effect

calculated based on the outcomes reported by that publication. This

information influences the final outcome of the review.

One of the essential steps in conducting a systematic review is

the process of citation screening, in which a large number of publi-

cations are initially identified through a literature search and then

screened to determine those relevant to the review [1, 33]. This

process can be time-consuming and labour-intensive, involving

making thousands of eligibility decisions. Given the importance

of citation screening in systematic literature reviews, there have

been numerous attempts to automate the process [27]. Previous

studies have investigated the use of automated citation screen-

ing methods for systematic literature reviews by utilising various

natural language processing (NLP), machine learning (ML), and

information retrieval (IR) methods to retrieve, rank, or classify

references [11, 16, 19, 27, 29–31, 34, 38–40].

To understand the effectiveness of automated citation screening

methods, practitioners have relied on metrics based on the notions
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of recall, precision and cost – and of a binary assessment of rele-

vance
1
[19, 27, 34]. This practice assigns to every publication to

be included in the review the same importance. So, for example, if

method 𝑀1 identifies as potentially relevant publications {𝐴, 𝐵,𝐶}
while method𝑀2 identifies publications {𝐴, 𝐷, 𝐸}, and the ground

truth is that the relevant publications are {𝐴, 𝐵, 𝐷}, then𝑀1 and𝑀2

achieve the same recall, precision and cost. However, we argue, that

the two sets {𝐴, 𝐵,𝐶} and {𝐴, 𝐷, 𝐸} may not be equally important,

and thus identifying either of 𝐵 or 𝐷 may not be equivalent if the

outcomes of the review were considered. In fact, if excluded, some

publications can significantly change a review’s conclusion to the

extent that the conclusion might be the opposite (e.g., from favour-

ing a drug to favouring a placebo) [25, 26]. On the other hand, not

including other publications might have only a small quantitative

impact on the outcomes of the review.

We argue that a holistic evaluation of retrieval and automated

citation screening methods for systematic review creation should

not only consider the concepts of recall, precision and cost, but

also the quality of the outcomes generated from the analysis of the

automatically included publications. Following this direction, we

propose a new evaluation framework that considers inclusion and

exclusion information and meta-analysis data from reviews created

by Cochrane – the largest organisation responsible for creating sys-

tematic literature reviews in medicine,
2
to estimate outcomes and

weights of included publications. This information can be used to

assess the quality of ranking and classification methods. This frame-

work allows for assessing automatic approaches from the angle of

how closely their outcomes – not just their set of included publica-

tions – are to the outcomes of the original review. By comparing the

outcomes of the automated model to those of the original review,

we can gain a better understanding of the quality of the automated

approach and its effect on the final outcome of the review.

We propose five aspects of analysis focusing on different fea-

tures of review outcomes. We explore initial experiments on the

CLEF TAR 2019 dataset [16]. Our simulation results show that by

randomly removing one publication per review (average recall of

92% publications), 95% of outcomes remain unchanged. However,

after removing five publications (average recall of 63%), 76% of the

outcomes are still the same, showing that the relationship between

recall and achieved outcomes is not linear. We also show that the

outcome-based evaluation emphasises different aspects of the mod-

els’ performance than the traditional IR evaluation measures. We

finally propose multi-objective optimisation to handle the problem

of non-estimable outcomes.

We believe this new evaluation approach will provide a bet-

ter understanding of the impact of automatic literature screening

methods on the outcome of systematic literature reviews and help

identify areas in which these methods can be improved.

2 RELATEDWORK
The effectiveness of automatic approaches for search strategy cre-

ation and systematic review screening has been traditionally eval-

uated using binary relevance ratings [16, 27, 34], often sourced at

1
Every publication to be included in the review is labelled as relevant, while every

excluded publication is non-relevant.

2
https://www.cochrane.org

the title and abstract screening level, rather than at the full-text

level.

When the screening problem is treated as a ranking task (e.g., for

the sub-task of screening prioritisation or stopping prediction), then

rank-basedmetrics andmetrics at a fixed cut-off are commonly used,

e.g., 𝑛𝐷𝐶𝐺@𝑛, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙@𝑛, last relevant found [12, 32].

Cost-based and economic-based metrics are also used, especially in

the context of the query formulation task in the CLEF TAR shared

task [14–16], e.g., total cost (TC) or total cost with a weighted

penalty (TCW). The TREC Total Recall track [9] also used a cut-off

based metric, 𝑟𝑒𝑐𝑎𝑙𝑙@𝑎𝑅 +𝑏, which is defined as the recall achieved

when 𝑎𝑅+𝑏 documents have been identified, where 𝑅 is the number

of relevant documents in the collection and 𝑎 and 𝑏 are parameters.

When 𝑎 = 1 and 𝑏 = 0, 𝑟𝑒𝑐𝑎𝑙𝑙@𝑎𝑅 + 𝑏 is equivalent to R-precision.

In the patent domain, the PRES score has been proposed which

takes into account achieved recall and the user’s search effort [23].

When the screening problem is treated as a classification task,

metrics based on the confusion matrix and the notion of Precision

and Recall are commonly used [27, 34]: aside from Precision and

Recall, metrics include variations of the harmonised mean between

the two, i.e. F𝛽–score, utility, U19 [35–37], sensitivity-maximising

thresholds [6], and AUC [4]. Another metric, Work Saved over

Sampling (WSS), measures the amount of work saved when using

machine learning models to screen irrelevant publications [5, 18,

19, 24]. The True Negative Rate (TNR) and nreTNR (normalised

rectified TNR) were proposed as an alternative as it addresses some

of the limitations of WSS regarding averaging scores from multiple

datasets [20, 21].

Nussbaumer-Streit et al. [26] compared repeated literature searches

using 14 abbreviated approaches (combinations of various databases

with and without searches of reference lists) on a sample of 60

Cochrane systematic reviews of clinical interventions. They re-

calculated the main summary-of-findings table of each Cochrane

review and asked original review authors whether the conclusions

changed compared to the original review. They found that in only

2% of cases (95% CI: 0%–9%), combining one database with another

or with searches of reference lists was falsely reaching an opposite

conclusion compared to comprehensive searches. This outcome

shows that identifying all relevant studies is not always crucial for
obtaining the same review results.

Automated citation screening has become increasingly popular

in systematic literature reviews due to its potential to reduce the

time and cost required. However, current evaluation methods for

these methods are limited to binary relevance assessment, where

each publication is considered either relevant or irrelevant, and do

not account for the impact of each publication on the review out-

come. This is a vital issue, as the assumption that all relevant publi-

cations are equally important to the final outcome of the systematic

review is not necessarily valid. Without an accurate assessment

of the importance of each document, the conclusions of a system-

atic review may be biased or incomplete. To address this issue, in

this paper, we propose a novel methodology for assessing citation

screening based on evaluating outcome differences, which enables

us to determine the impact of each publication on the systematic

review.

https://www.cochrane.org
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3 EVALUATION FRAMEWORK
This paper proposes a new evaluation framework for automated

citation screening. Our framework includes three steps which are

detailed in the following subsections. The first step is data extrac-

tion, where we extract statistics of the studies included in the review

and match studies to publications. The second step is model eval-

uation, where we use the extracted data to estimate the review’s

outcomes for rankings or classifications of the citation list. The

third step is the analysis of the results, where we compare the out-

comes obtained from the alternative rankings to the outcomes of

the original review. Our proposed framework allows for a more

nuanced evaluation of automated citation screening methods. By

considering the impact of each publication on the review’s out-

comes, we can identify which publications are most important to

retrieve and prioritise them accordingly. Next we describe each step

in detail.

3.1 Data Extraction
Cochrane systematic reviews distinguish between study and publi-
cation. A study is a distinct piece of research conducted to answer

a specific research question or investigate a particular hypothesis.

It typically involves a group of participants, data collection meth-

ods, and specific objectives. Publications, on the other hand, are

the atomic units which reviewers screen. Each study can be re-

ported by several publications, such as journal articles, conference

proceedings, or research reports. Each publication may present dif-

ferent aspects or findings of the same study, but they are all derived

from the same underlying research. We assume that that study has

been found if at least one publication reporting it was successfully

retrieved.

For every review, based on its Cochrane review ID, we identify

its corresponding RevMan file and list of included publications. A

RevMan file is the format used by Cochrane containing all statistical

data about studies and outcomes included in the review. Outcomes

of Cochrane reviews are reported in the following hierarchy: one

comparison can have several outcomes, and one outcome can con-

sist of a few subgroups. We extract all metadata from the RevMan

files, such as the comparisons, outcomes and subgroups and the

results of every included study. Note that the use of RevMan files

is for experimental convenience, but is not a requirement from the

framework: the required data could be provided in other formats.

Furthermore, Cochrane recently announced that future systematic

literature reviews would contain statistical data in more common

csv and ris formats.
3

Cochrane reports a list of included publications and studies

which correspond to them. Traditionally, retrieval was conducted

at the level of publications [14–16]. In order to be able to re-use pre-

vious relevance judgments, we need to assign PubMed IDs to these

publications. Our process for matching PubMed IDs to publications

is based on four steps in the following order:

• We check if the PubMed ID information is provided on the

Cochrane references webpage.

3
https://www.cochrane.org/news/cochrane-improving-way-we-manage-and-share-

data-associated-our-reviews

• We conduct search in PubMed using Entrez
4
by searching for

the same title and authors.

• We search for the PubMed ID in SemanticScholar
5
using publi-

cation DOI from Cochrane references webpage.

• We search again in PubMed, this time with a relaxed require-

ment by searching for an exact match in the title only.

3.2 Model Evaluation
When conducting a meta-analysis, for every outcome, each study

has its weight and effect size calculated first (respectively columns

6 and 7 on example forest plots in Figure 1). Effect size is an essen-

tial statistical concept in the analysis of research data [10]. It is a

measure that quantifies the magnitude of difference between two

groups in a study. Researchers use a variety of effect measures to

compare outcome data between two intervention groups, including

odds ratios and mean differences.

For instance, in ratio effect measures, a value of 1 represents

no difference between the groups [7, 8]. On the other hand, in

difference measures, a value of 0 represents no difference between

the groups. Values higher or lower than these “null” values may

indicate either benefit or harm of an experimental intervention,

depending on the order of the interventions in the comparison

and the nature of the outcome. Every estimate is expressed with

a measure of uncertainty, such as a confidence interval (CI) or

standard error (SE).

Effects depend on the number of events reported by that study,

whereas weights assigned to each study are influenced by other

studies included in this outcome. So when removing one study from

the meta-analysis, only the weights of the remaining studies will

change, but their effect sizes will stay the same (compare Figures 1a

and 1c). There are several types of outcomes reported by Cochrane,

in our study, we focus on the dichotomous and continuous outcomes

only and calculate them following the approach by Deeks and

Higgins [8].

Our framework takes arbitrary ranking or classification runs

and calculates the final outcomes of the review based on publica-

tions included in the run. When evaluating a classification run or a

search result, we take all publications predicted as relevant. When

evaluating ranking runs, we need to assume a cut-off point. Previ-

ous studies working on systematic review automation used either

cut-off at r% of recall [5, 20], or at d% of total dataset size [14, 15].

3.3 Results Analysis
We analyse the results by examining the outcomes generated by the

run and compare them with the outcomes obtained by the original

review (Figure 1). We extend the analysis done by Nussbaumer-

Streit et al. [26], who proposed two categories of “changed conclu-

sions”: (1) if the new review drew the opposite conclusion, (2) if

it is not possible to draw a conclusion or the new conclusion has

less certainty. We distinguish five aspects of analysis for review

outcomes against the original review (Figure 1a). The first two

of these aspects are real-valued, whereas the remaining three are

categorical:

4
https://www.ncbi.nlm.nih.gov/search/

5
https://www.semanticscholar.org
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Study or Subgroup

Study A

Study B

Study C

Study D

Study E

Total (95% CI)

Total events:

Heterogeneity: Tau² = 0.11; Chi² = 4.65, df = 4 (P = 0.32); I² = 14%

Test for overall effect: Z = 2.77 (P = 0.006)

Test for subgroup differences: Not applicable

Experimental

Events

27

13

2

3

0

45

Total

38

30

10

30

8

116

Control

Events

10

0

4

1

5

20

Total

37

30

40

30

50

187

Weight

62.7%

5.8%

16.8%

9.0%

5.7%

100.0%

Risk ratio

M-H, Random, 95% CI

2.63 [1.49 , 4.63]

27.00 [1.68 , 434.53]

2.00 [0.42 , 9.42]

3.00 [0.33 , 27.23]

0.52 [0.03 , 8.53]

2.65 [1.33 , 5.28]

Risk ratio

M-H, Random, 95% CI

0.01 0.1 1 10 100
Favours experimental Favours control

(a) Hypothetical review outcome with 5 included studies.

Study or Subgroup

Study A

Total (95% CI)

Total events:

Heterogeneity: Not applicable

Test for overall effect: Z = 3.34 (P = 0.0008)

Test for subgroup differences: Not applicable

Experimental

Events

27

27

Total

38

38

Control

Events

10

10

Total

37

37

Weight

100.0%

100.0%

Risk ratio

M-H, Random, 95% CI

2.63 [1.49 , 4.63]

2.63 [1.49 , 4.63]

Risk ratio

M-H, Random, 95% CI

0.01 0.1 1 10 100
Favours experimental Favours control

(b) Not including studies B, C, D and E still keep the review outcome
approximately the same (absolute difference: 0.02, relative difference:
0.0076).

Study or Subgroup

Study A

Study B

Study D

Study E

Total (95% CI)

Total events:

Heterogeneity: Tau² = 0.47; Chi² = 4.52, df = 3 (P = 0.21); I² = 34%

Test for overall effect: Z = 1.93 (P = 0.05)

Test for subgroup differences: Not applicable

Experimental

Events

27

13

3

0

43

Total

38

30

30

8

106

Control

Events

10

0

1

5

16

Total

37

30

30

50

147

Weight

56.7%

12.7%

18.1%

12.5%

100.0%

Risk ratio

M-H, Random, 95% CI

2.63 [1.49 , 4.63]

27.00 [1.68 , 434.53]

3.00 [0.33 , 27.23]

0.52 [0.03 , 8.53]

2.95 [0.98 , 8.86]

Risk ratio

M-H, Random, 95% CI

0.01 0.1 1 10 100
Favours experimental Favours control

(c) Not including study C will overestimate the review outcome, yet
it will be within the 95% CI range.

Study or Subgroup

Study B

Total (95% CI)

Total events:

Heterogeneity: Not applicable

Test for overall effect: Z = 2.32 (P = 0.02)

Test for subgroup differences: Not applicable

Experimental

Events

13

13

Total

30

30

Control

Events

0

0

Total

30

30

Weight

100.0%

100.0%

Risk ratio

M-H, Fixed, 95% CI

27.00 [1.68 , 434.53]

27.00 [1.68 , 434.53]

Risk ratio

M-H, Fixed, 95% CI

0.01 0.1 1 10 100
Favours [experimental] Favours [control]

(d) Not including studies A, C, D and E will overestimate the review
outcome, and it will be above the 95% CI range of the original out-
come.

Study or Subgroup

Study E

Total (95% CI)

Total events:

Heterogeneity: Not applicable

Test for overall effect: Z = 0.46 (P = 0.64)

Test for subgroup differences: Not applicable

Experimental

Events

0

0

Total

8

8

Control

Events

5

5

Total

50

50

Weight

100.0%

100.0%

Risk ratio

M-H, Random, 95% CI

0.52 [0.03 , 8.53]

0.52 [0.03 , 8.53]

Risk ratio

M-H, Random, 95% CI

0.01 0.1 1 10 100
Favours experimental Favours control

(e) Not including studies A, B, C and D will change the study outcome
– from ‘favours control’ to ‘favours experimental’.

Study or Subgroup

Total (95% CI)

Total events:

Heterogeneity: Not applicable

Test for overall effect: Not applicable

Test for subgroup differences: Not applicable

Experimental

Events

0

Total

0

Control

Events

0

Total

0

Weight

Risk ratio

M-H, Random, 95% CI

Not estimable

Risk ratio

M-H, Random, 95% CI

0.01 0.1 1 10 100
Favours experimental Favours control

(f) Not including any study makes the outcome non-estimable.

Figure 1: Different versions of review outcomes represented as forest plots. Each row is a single study. Columns from the right
represent, respectively: (1) the study identifier, (2) number of events in the experimental group (e.g., patients with specific
symptoms or adverse events), (3) experimental group size, (4) number of events in the control group, (5) control group size, (6)
the weight of a study, and (7) a difference (e.g., risk ratio or standardised mean difference) in events between experimental or
control group. Simulations and figures done using RevMan Web, available at http://revman.cochrane.org.

(1) Magnitude of difference — By how much are the outcomes differ-

ent in their effect size (Figure 1b)? In other words, what is the

numerical impact on the review outcome when certain studies

are not included? This is measured by calculating the relative

difference in effect size between the original outcome 𝑂𝑜 and

predicted outcome 𝑂𝑝 : 𝑀𝑜𝐷 =
∥𝑂𝑜−𝑂𝑝 ∥

∥𝑂𝑜 ∥ . When 𝑂𝑜 = 0 and

𝑂𝑝 ≠ 0, we assume 𝑀𝑜𝐷 = 100%; otherwise 𝑀𝑜𝐷 = 0. Sim-

ilarly, when the predicted outcome cannot be estimated, we

assume𝑀𝑜𝐷 = 100%.

(2) Distance from CI — Is the new outcome within the Confidence

Interval (CI) of the original outcome (Figure 1c)? The answer is

a distance between the predicted outcome 𝑂𝑝 and the closest

of the pair (𝐶𝐼𝑙𝑜𝑤𝑒𝑟 ,𝐶𝐼𝑢𝑝𝑝𝑒𝑟 ):

Δ𝐶𝐼 =


∥𝑂𝑝 −𝐶𝐼𝑙𝑜𝑤𝑒𝑟 ∥ if 𝑂𝑝 < 𝐶𝐼𝑙𝑜𝑤𝑒𝑟 ,

∥𝑂𝑝 −𝐶𝐼𝑢𝑝𝑝𝑒𝑟 ∥ if 𝑂𝑝 > 𝐶𝐼𝑢𝑝𝑝𝑒𝑟 ,

0 otherwise.

= ∥𝑂𝑝 −𝐶𝐼𝑙𝑜𝑤𝑒𝑟 if 𝑂𝑝 < 𝐶𝐼𝑙𝑜𝑤𝑒𝑟 else 𝑂𝑝 −𝐶𝐼𝑢𝑝𝑝𝑒𝑟 ∥.

(3) Overestimation/underestimation— Is the outcome overestimated

or underestimated compared to the original one (Figure 1d)?We

first check if the calculated outcome is equal (due to the limits

of precision of data reported in RevMan files, we use the relative

and absolute tolerance of 10
−5

and 10
−6

respectively). Then, if

the outcome is different, we check if the result is higher than

the original (overestimation) or lower (underestimation). The

answer has three options: “overestimated”, “underestimated”,

and “equal”.

(4) Sign—Does the outcome have the same sign as the original one

(Figure 1e)? In other words, are the new conclusions opposite to

the original ones? The answer is binary: “yes”/“no”. This aspect

corresponds to the first category from Nussbaumer-Streit et al.

[26].

(5) Estimability — Is it possible to calculate the outcome (Figure 1f)?

An outcome cannot be calculated if there are no included studies

concerning it. The answer is binary: “yes”/“no”.

http://revman.cochrane.org
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Table 1: Statistics of the considered dataset.

CLEF TAR 2019

Dataset split Training Test

Reviews’ type — Interventional —

# Reviews 17 15

Outcomes per review

Min 2 3

Median 9 15

Max 41 128

Studies per outcome

Min 1 1

Median 2 2

Max 55 40

4 EXPERIMENT SETUP
Contrary to the traditional evaluation based on retrieving rele-

vant publications, with our framework we envision the evalua-

tion in an outcome-based approach. Specifically, we do not treat a

dataset as a collection of systematic reviews but rather a collection

of outcomes. The problem of conducting a systematic review is

multi-dimensional. One can think of it as having several outcomes

reporting different dimensions of the review, and the evaluation of

the user’s needs is conducted independently from each outcome’s

perspective. We do not want to average across reviews, each con-

taining a different number of outcomes. We add or average these

outcome-level results instead.

Before we present the results, we first discuss the used dataset

and models.

4.1 Dataset and Models
We used a collection of 38 systematic reviews of interventions from

the CLEF TAR 2019 training and test datasets [16]. Each review

consists of a Cochrane ID, a protocol, and a list of publications

described by their PubMedIDs with qrels both on the title and

abstract level and a full-text level. We enhanced the dataset by

collecting RevMan files and information about the data and analysis

as described in Section 3.1.

Out of 38 reviews in CLEF TAR 2019, our script found studies

and outcomes for 32 reviews (17 in the training subset and 15 in

the test subset). We summarise the statistics of the 32 reviews we

consider in Table 1. There is a significant discrepancy in the number

of outcomes reported by the reviews, ranging from as few as 2 or

3 outcomes in small reviews to 128 outcomes in the largest one.

Moreover, the majority of these outcomes come from just one or

two studies, which presents an additional challenge.

These 32 reviews report 1640 included publications, out of which

we managed to find PubMed IDs for 1175 of them (71.6%). Next,

we wanted to match publications identified with our script to the

CLEF TAR 2019 qrels based on the PubMed ID. There were, in total,

778 relevant documents on the full-text level identified in the CLEF

TAR for these 32 reviews. We successfully merged 741 publications

(95.2% of the total in CLEF TAR); there are only 37 publications in

CLEF TAR 2019 qrels which we do not have in our records.

We use 34 official CLEF TAR 2019 runs from three teams. The

teams used a variety of ranking methods, including traditional

BM25, interactive BM25, continuous active learning, relevance feed-

back, and various stopping criteria. Additionally, we included 40

runs based on the reproducibility of the active learning method

by Yang et al. [41]. In total, we evaluate 74 runs, but for the sake of

brevity, in this paper, we present the results on a subset of 28 runs,

as some of the runs were very similar to each other. Our model

requires full-text assessments, and thus, we use qrels from the full-

text level, despite the fact that runs have been trained on titles

and abstracts. While this might not be fair towards the evaluated

systems, our experiments aim not to establish which systems are

better but to provide an example of the operationalisation of our

framework and its implications.

5 OUTCOME-BASED EVALUATION
We first run a simulation study to understand the results of our

evaluation framework better in a controlled manner. Then, we

discuss the usage of the evaluation framework with retrieval and

classification runs on CLEF TAR 2019 collection.

5.1 Preliminary Simulation
We are interested in executing a preliminary study to understand

the effect our outcome-oriented evaluation has on the analysis of

systematic review automation methods.

We simulate the evaluation framework by taking the set of in-

cluded publications for each review and randomly removing [1, 2, 3,
4, 5, 10, 15, 20, 30, 50, 100] publications from the set and then re-

calculating the outcomes. In other words, we are interested in ex-

ploring the impact of false negatives on the final review outcome.

We compare the outcomes with the ‘gold’ outcomes from the orig-

inal review. Results from all 32 systematic reviews are reported

in Table 2. In our analysis, we consider the metrics from all five

analysis aspects (Section 3.3), as well as the Recall.

Figure 2 presents box plots of averaged relative difference (1)

values from our simulation at a cut-off at 20% of the total number of

documents. These results validate our expectations regarding the

behaviour of this aspect of analysis as the relative difference grows

with the number of removed publications. On the other hand, the

distance to confidence intervals (aspect (2), Figure 3) does not show

any specific trend on the CLEF 2019 reviews.

Out of all the metrics, the one that changes the most when

varying the number of removed publications is estimability (5).
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Figure 2: Box plots presenting relative difference values from
20 simulations on the publication level. Note that the x-axis
does not preserve the linear step.
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Table 2: Initial results of the simulation on the publication level. Outcomes are aggregated across 32 systematic reviews and are
averaged from 20 different random seeds.

N relevant publications removed from the review

Analysis Aspect gold 1 2 3 4 5 10 15 20 30 50 100

1 Mean relative difference 0.0 0.9 2.5 5.3 7.1 10.0 18.3 26.2 36.5 54.9 65.5 84.5

2 Mean distance from CI 0.000 0.002 0.003 0.004 0.007 0.008 0.013 0.042 0.102 0.018 0.008 0.083

3

Equal outcome 824 786 750 706 657 623 496 410 340 256 164 80

Different 0 38 73 117 167 200 328 413 483 567 659 743

- Underestimated 0 17 27 38 57 66 98 103 90 55 58 23

- Overestimated 0 20 45 79 109 134 229 309 393 512 601 720

4

Have same sign 824 815 800 774 756 735 663 597 516 365 277 121

Have different sign 0 9 24 49 67 88 160 227 307 458 546 702

5

Reported outcomes 824 816 804 781 767 743 675 610 529 371 284 128

Missing outcomes 0 7 20 43 56 80 148 213 294 452 539 695

Average 𝑅𝑒𝑐𝑎𝑙𝑙 for publications 1.00 0.92 0.84 0.75 0.70 0.63 0.45 0.35 0.28 0.22 0.14 0.05

Average 𝑅𝑒𝑐𝑎𝑙𝑙 for studies 1.00 0.97 0.91 0.80 0.77 0.68 0.53 0.43 0.37 0.31 0.22 0.12
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Figure 3: Box plots presenting distance to confidence inter-
vals values from 20 simulations on the publication level. Note
that the x-axis does not preserve the linear step.

As more publications are removed, it becomes more and more

challenging to calculate outcomes, predominantly because half of

the original outcomes relied on one or two studies. At the very

extreme, when 100 publications are removed from every review,

only 15% of outcomes are still estimable.

The measure of overestimation and underestimation (3) is show-

ing growing trends with more publications being removed. Already

not including one publication per review (achieving an average

recall of 92% for publications and 97% for studies) changed 38 out-

comes (4.6% of the total number of outcomes). This shows that the

commonly used threshold of 95% Recall does not enforce preserving

the same outcomes of the review. We also notice that the sign (4)

aspect is not very descriptive across the simulations as it is mainly

influenced by non-estimable outcomes.

5.2 Evaluation with actual runs
In this section, we use the prediction on the test subset of the dataset

from runs described in Section 4.1 and evaluate them using our

framework. We further consider two baselines:

gold – the best possible run which returns all relevant studies from

the original review first.

max-with-qrels – this run takes into account the limitations of

the CLEF TAR collection and our PubMed articles matching

process. It uses all relevant studies identified in the CLEF

TAR 2019 qrels as relevant and places them first.

We follow the evaluation procedure of CLEF TAR and calculate

the following traditional evaluation measures: Mean Average Preci-

sion (𝑀𝐴𝑃 ), last relevant found, Recall@k% of top-ranked publica-

tions, with k in [5, 10, 20, 30, 50], Work Saved over Sampling at r% of

recall with r in [95%, 100%] (𝑊𝑆𝑆@95%,𝑊𝑆𝑆@100%), 𝑛𝐷𝐶𝐺@20%

of top-ranked publications and Area Under Recall Curve (𝐴𝑈𝑅𝐶).

CLEF TAR as their primary reporting measure used𝑀𝐴𝑃 ; therefore,

we will treat𝑀𝐴𝑃 as the reference measure when sorting runs. We

do not evaluate baselines, yet for the purpose of sorting, we assume

that they achieved the highest MAP score.

We calculate the relative difference in study outcomes (analysis

aspect (1) in Section 3.3) for every outcome in all reviews. The lower

the average score is, the better the runs, as their effect differs less

from the original review effect. As considered runs were rankings,

we follow the same procedure as for Recall and nDCG, namely we

calculate the relative difference at k% of top-ranked publications

with k in [5, 10, 20, 30, 50].

Figure 4 presents a box plot of relative difference per outcome

calculated at 30% cut-off of dataset size for 15 CLEF TAR reviews.

Except for the best run, all other runs changed their rank when

ordered using their mean relative difference score compared to

the MAP-based ranking. While top runs, according to MAP scores,

have low variability, there are runs among the top 10 which show

considerable fluctuation. This means there are specific reviews for

which these runs will lead to significantly different decisions about

the outcome. This behaviour is comparable for relative difference

at other cut-offs 𝑘 .
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Figure 4: Box plot presenting runs with their relative differ-
ence in study outcomes for an evaluation with a cut-off at
30% of the total number of documents for each review. Runs
are sorted by their MAP score. The orange circle denotes the
mean relative difference @30%. The X-axis is cut at 30, while
the outliers exist up to the value of 100; we cut for visualisa-
tion purposes.
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Figure 5: Linear regression fits between relative difference
at 20% cut-off of documents and other evaluation measures
scores. Correlations for relative difference at other cut-offs
follow similar trends.

What is also interesting is that the mean relative difference at 30%

cut-off for themax-with-qrels baseline run equals 6.24. Furthermore,

for the relative difference score calculated at 100% of documents, this

baseline score is also not equal to 0. This means that the limitations

of the CLEF TAR collection and qrels establish a lower bound for

the best achievable value of relative difference.

Figure 5 presents correlation between relative difference calcu-

lated at 20% cut-off of dataset size and evaluation measures used

at CLEF TAR 2019. The score correlates positively with the last

relevant found, but there is a negative correlation with all other
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Figure 6: Visualisation of the Pareto frontier for two objec-
tives: (1) number of non-estimable outcomes on the x-axis
and (2) sum of relative difference for estimable outcomes
on the y-axis. Both objectives are to be minimised. Runs are
evaluated at a cut-off at 5% of the total number of documents
for each review. Non-dominated runs are marked with a blue
colour.

measures. This confirms our intuition that a higher average relative

difference score across outcomes means a worse model effective-

ness, as the ideal ‘best’ model should achieve a difference of 0.

5.3 Pareto Frontier Optimisation
Based on the simulation results, we note a problem with non-

estimable outcomes. Should these outcomes be assigned a zero

score or maybe an infinite value? This raises the issue of handling

these values in the evaluation process for calculating relative differ-

ence scores. In our study, we assigned a zero value to non-estimable

outcomes, which allowed us to assume that the relative difference

equals 100%. Nevertheless, this yields the problem of when the

actual outcome is equal to the zero value (i.e., the study does not

favour the experimental nor the control group), as the difference,

in this case, would also be zero. One way to overcome the issue

of non-estimable outcomes would be to evaluate both estimability

and relative difference implemented, for instance, using the Pareto

frontier [22].

Figure 6 presents the Pareto frontier evaluated at a cut-off at

5% of the total number of documents. On the x-axis, we show the

number of non-estimable outcomes for each run. On the y-axis,

there is a sum of relative difference for estimable outcomes. We

min-max normalise the sums including the gold baseline run (gold

represents the best achievable score of (0, 0)). Both objectives should
be minimised, i.e., we want to have as few non-estimable outcomes
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as possible and for all estimated outcomes, the difference would be

as close to zero as possible. Contrary to the previous evaluations, we

can notice that no single run would dominate on both dimensions.

6 LIMITATIONS
The primary objective of this paper was to introduce the concept

of evaluating automated methods for systematic reviews based on

their impact on review outcomes, rather than relying on binary

qrels. In this section, we reflect on the potential limitations that arise

when attempting to fully operationalise our proposed framework.

Do not optimise models using this measure. A practice that

can be observed across the field is treating evaluation measures as

an optimisation objective. We believe that our evaluation approach

should not be used for optimising models. The notion of difference

in study outcomes is only known a-posteriori when the review

is completed. Using absolute differences in study outcomes as an

optimisation objective might lead to over-fitting to biases in data.

Other types of systematic reviews. We focus only on system-

atic reviews of interventions which have a clear structure and eval-

uate the effectiveness of specific treatments, programs, or policies

by comparing experimental setups with control groups. However,

there are several other types of systematic reviews, such as diag-

nostic test accuracy reviews, prognostic reviews, and qualitative

research reviews, each of which presents unique challenges for

automation and evaluation [16]. Future work should investigate

how this outcome-based evaluation framework can be extended to

these other types of reviews.

Different outcome types.While our proposed evaluation frame-

work focuses on continuous and dichotomous outcomes, other

types of outcomes may be reported in systematic reviews, includ-

ing ordinal, count, and time-to-event data. In our analysis, however,

we found that continuous and dichotomous outcomes comprised

most of the outcomes in the dataset we studied, accounting for 92%

of all reported outcomes across 32 CLEF TAR 2019 reviews.

We believe that our evaluation framework could be generalised

to incorporate other types of outcomes. Additionally, while we at-

tempted to closely follow the evaluation protocols from the Cochrane

handbook, some shortcuts were taken during the implementa-

tion process (for 2.4% of outcomes our effect calculations yielded

marginally different results). In futurework, ideally, access to RevMan

or another official program for calculating study outcomes would

be needed to make sure that all outcome types are covered.

Title and abstract screening. We work on the outcomes ex-

tracted from the full-text screening and use relevance judgments

from full-text screening to judge the runs. However, most models

are trained on titles and abstracts, which might make this an unfair

comparison.

7 CONCLUSION
This paper puts forward a novel, outcome-based evaluation frame-

work for assessing the effectiveness of automatic search strategies

and citation screening methods in the context of systematic liter-

ature reviews. Our proposed framework evaluates the quality of

these methods based on how closely the outcomes of their included

publications match the actual review outcomes. We believe that this

approach offers a more accurate reflection of real-world scenarios

where not all included publications have the same impact on the

final review outcome.

In addition to proposing the framework, we explore five anal-

ysis aspects that it enables, including measuring the numerical

difference in predicted systematic review outcomes. We run initial

experiments to simulate the impact of false negatives on reviews’

outcomes showing that five missing publications per review can

change 24% of outcomes. We also compare the evaluation results

obtained using our framework with those obtained using tradi-

tional evaluation methods on CLEF TAR 2019 runs, highlighting

the differences in focus between the two approaches.

Overall, we believe this framework represents a step forward

in developing more effective and realistic methods for evaluating

automation methods in the context of systematic literature reviews

in medicine and in other domains in which the importance of sys-

tematic reviews is increasing.
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