
Quality Matters: Understanding the Impact of
Incomplete Data on Visualization Recommendation

Rischan Mafrur1[0000−0003−4424−3736], Mohamed A. Sharaf2[0000−0002−3405−5224],
and Guido Zuccon1[0000−0003−0271−5563]

1 The University of Queensland, Brisbane, Australia
{r.mafrur,g.zuccon}@uq.edu.au

2 United Arab Emirates University, Al Ain, UAE
msharaf@uaeu.ac.ae

Abstract. Incomplete data is a crucial challenge to data exploration, analytics,
and visualization recommendation. Incomplete data would distort the analysis
and reduce the benefits of any data-driven approach leading to poor and mislead-
ing recommendations. Several data imputation methods have been introduced to
handle the incomplete data challenge. However, it is well-known that those meth-
ods cannot fully solve the incomplete data problem, but they are rather a mitigat-
ing solution that allows for improving the quality of the results provided by the
different analytics operating on incomplete data. Hence, in the absence of a robust
and accurate solution for the incomplete data problem, it is important to study the
impact of incomplete data on different visual analytics, and how those visual an-
alytics are affected by the incomplete data problem. In this paper, we conduct a
study to observe the interplay between incomplete data and recommended visual
analytics, under a combination of different conditions including: (1) the distribu-
tion of incomplete data, (2) the adopted data imputation methods, (3) the types
of insights revealed by recommended visualizations, and (4) the quality measures
used for assessing the goodness of recommendations.
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1 Introduction
To support effective data exploration, there has been a growing interest in developing
solutions that can automatically recommend data visualizations that reveal important
data-driven insights. Several visual analytic tools have been introduced such as Tableau
[9], Spotfire [8], Power BI [7]. The aim of those tools is to provide aesthetically high-
quality visualizations that reveal interesting insights. Without any prior knowledge of
the explored data, it is a challenging task for the analyst to manually select the combina-
tions of attributes and measures that lead to interesting visualizations. Clearly, manually
looking for insights in each visualization is a labor-intensive and time-consuming pro-
cess. Such challenge motivated research efforts that focused on automatic recommen-
dation of visualizations based on some metrics that capture the utility of recommended
visualizations (e.g., [23], [22], [36], [17], [18], [35], [28], [15], [19]). However, all of
those approaches operate under the assumption that the analyzed data is clean and over-
look the data quality problems that might impair the recommendation process.

Data quality is a crucial challenge to data exploration and analytics. Poor data qual-
ity would distort the analysis and reduce the benefits of any data-driven approach. That
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(a) top-1 (b) top-2 (c) top-3
Fig. 1: Top-k recommended visualizations obtained from complete heart disease
dataset, k = 3

(a) top-1 (b) top-2 (c) top-3
Fig. 2: Top-k recommended visualizations obtained from incomplete heart disease
dataset (20% missing values), k = 3, NaN values are ignored
is, garbage in, garbage out (GIGO) phenomenon. In real world settings, most datasets
exhibit data quality problems, such as incomplete data, which in turn leads to incorrect
analytical results (e.g., [26], [22]). This is true for descriptive analytics, in which in-
complete data leads to incorrect results for aggregate and statistical queries [39]. It is
also equally true for predictive analytics, where reduced accuracy in classification and
prediction are common side effects of working with incomplete data (e.g., [10] [16]).
Moreover, in the general context of recommendation systems, incomplete data has been
shown to result in inaccurate rankings, which has the expected effect of producing poor
and misleading recommendations [31].

Several data imputation methods have been introduced to handle the incomplete
data challenge (e.g., [27], [24], [13]). However, it is well-known that those methods
cannot fully solve the incomplete data problem, but they are rather a mitigating solu-
tion that allows for improving the quality of the results provided by the different ana-
lytics operating on incomplete data [10]. Hence, in the absence of a robust and accurate
solution for the incomplete data problem, it remains especially important to study the
impact of incomplete data on different visual analytics, and how those visual analytics
are affected by the incomplete data problem. This has been the focus of several research
studies, including assessing the impact of incomplete data on analytics that rely on ag-
gregate and statistical queries [39], predictions and classifications (e.g., [10], [16]), or
recommendation [31].

To the best of our knowledge, this work is the first to explore the impact of in-
complete data on the quality of recommended visualizations. In particular, our focus
in this work is to study the interplay between incomplete data and recommended vi-
sual analytics, under a combination of different conditions including: the distribution
of incomplete data, the adopted data imputation methods, the types of insights revealed
by those visualizations, and the quality measures used for assessing the goodness of
recommendations.

To further illustrate the problems addressed in this work, consider the motivating
example shown in Figures 1 and 2. Both figures show the recommended top-k visual
insights from a heart disease dataset [4] under two different settings: (1) complete data
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(Figure 1), versus (2) incomplete data, with 20% missing values (Figure 2). The detail
about the figures is explained further in Figure 3a. In both settings, the top-k visual
insights are generated using the deviation-based approach [36], where k = 3, and any
missing cells (i.e., NaN values) are ignored.

Meanwhile, comparing Figures 1 and 2, we notice the following: 1) the recommen-
dations from complete data (Figure 1) are significantly different from those on incom-
plete data (Figure 2); 2) the two sets of recommendations have only one visualization in
common (i.e., visualization based on sum oldpeak vs. thal3); and 3) that one common
visualization was ranked top-3 based on the complete data, whereas it is ranked top-1
based on the incomplete data!

Based on the example above, a user who is analyzing an incomplete data with 20%
missing values, would obtain a top-k recommended visualizations that are significantly
different from those obtained from a complete dataset, and in turn gaining ”false” in-
sights from the data. Since incomplete data is a prevailing problem that can only be
slightly mitigated by data imputation methods, it becomes essential to evaluate and
quantify its impact on the insights gained from visual data analytics approaches. That
is precisely the goal of this work, in which our main contributions are summarized as
follows:
1. We study the different types of visual insights that are generally sought by data

analysts in their data exploration workflows (Sec. 2).
2. We present three quality measures to quantify the impact of incomplete data on the

quality of visualization recommendation (Sec. 3).
3. We conduct an extensive experimental evaluation on real datasets and present the

impact of incomplete data on recommended visualizations with different data clean-
ing methods and different type of visual insights (Sec. 4).

2 Recommending Visual Insight
To recommend visual insight, we consider a multi-dimensional database D, which con-
sists of a set of dimensional attributes A and a set of measure attributes M. Also, let F
be a set of possible aggregate functions over measure attributes. Hence, specifying dif-
ferent combinations of dimension and measure attributes along with various aggregate
functions, generates a set of possible visualizations V over D. For instance, a possible
visualization Vi is specified by a tuple < Ai, Mi, Fi >, where Ai ∈ A, Mi ∈ M,
and Fi ∈ F, and it can be formally defined as: V i : VISUALIZE bar (SELECT
A, F(M) FROM D WHERE T GROUP BY A). Where VISUALIZE specifies the
visualization type (i.e., bar chart), SELECT extracts the selected columns which can
be dimensional attributes A ∈ A or measures M ∈ M, T is the query predicate (e.g.,
disease = ’Yes’), and GROUP BY is used in collaboration with the SELECT statement
to arrange identical data into groups.

Figure 1 shows the top-k recommended visual insights obtained from the complete
heart disease dataset where k = 3. Figure 1a is obtained from Vi : VISUALIZE bar
(SELECT cp, SUM(oldpeak) FROM HeartDiseaseDB WHERE disease=’Y’
GROUP BY cp). However, obtaining this visualization Vi is only possible if the an-
alyst knows exactly the parameters, which specify some aggregate visualizations that
lead to those valuable visual insights (e.g., dimensional attributes, measures, aggregate

3 thal: Thallium heart scan (normal, fixed defect, reversible defect)
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Fig. 3: Top-1 recommended visualization of (a) aggregate/outstanding, (b) correlation
and (c) skewness-based insight from heart disease dataset where NaN values are ignored

functions, grouping attributes, etc.). Hence, it is time-consuming to iteratively create
and refine visualizations to search for the ones that are useful and interesting.

Motivated by the need for efficient data analysis and exploration, several solutions
for recommending visualizations have recently emerged (e.g., [36], [18], [29], [35],
[28], [15], [14]). In such solutions, a large number of possible data visualizations V are
generated and ranked according to some metrics that capture the utility of recommended
visualizations. Towards this, the utility of each visualization Vi in V is calculated ac-
cording to the type of insight, which is described next.

In this work, we study three types of visual insights: The first type is the aggregate-
based insight which has been shown to be effective in recommending visualizations
based on some metrics that capture the utility of a recommended visualizations (e.g.,
[36], [15], [35]). The second type is the correlation-based insight. This insight type is
generally sought by data analysts looking for the attribute pairs with the highest correla-
tions [14]. The third type is the distribution-based insight (e.g., skewness and kurtosis)
(e.g., [32], [14]). In general, data analysts utilize distribution-based insight in order
to find the dimensions that deviate from the normal distribution. Hence, by considering
those insight types, we study insights based on single dimension (i.e., distribution-based
insight), pairs of measures (i.e., correlation-based insight) and combination of dimen-
sional attributes and aggregate functions of measures (i.e., aggregate-based insight). An
example of those three types of visual insights can be seen in Figure 3. Given three
types of the insights above, our problem definition as follows:
Definition 1. Recommending top-k visual insights: Given a dataset D, insight type
Y , the goal is to recommend a set top-k visual insight S ⊆ V, where |S| = k, and V
is the set of all possible generated visualizations from D, such that the overall utility
U (S) based on Y is maximized.

Meanwhile, the utility of each visualization Vi is computed based on the type of
insight shown by recommended visualizations, which are explained next.
2.1 Aggregate-based insight
In this paper, we address two types of aggregate-based insight: outstanding and sim-
ilarity (e.g., [36], [34]). Outstanding-based insight recommends the most outstanding
visualizations based on deviation-based approach (e.g., [36], [17], [29]). The deviation-
based approach is able to provide analysts with interesting visualizations that highlight
some of the particular trends of the analyzed datasets. The deviation-based approach
compares an aggregate visualization generated from the selected subset dataset DQ

(i.e., target visualization Vi(DQ)) to the same visualization if generated from a ref-
erence dataset DR (i.e., reference visualization Vi(DR)). To calculate the outstand-
ing/deviation score, each target visualization Vi(DQ) is normalized into a probability
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distribution P [Vi(DQ)] and similarly, each reference visualization into P [Vi(DR)]. In
particular, consider an aggregate visualization Vi =< A,M,F >. The result of that
visualization can be represented as the set of tuples: < (a1, g1), (aj , gj), ..., (at, gt)>,
where t is the number of distinct values (i.e., groups) in attribute A, aj is the j-th group
in attribute A, and gj is the aggregated value F (M) for the group aj . Hence, Vi is

normalized by the sum of aggregate values G =
t∑

j=1

gj , resulting in the probability

distribution P [Vi] =< g1
G ,

g2
G , ...,

gt
G >. Finally, the utility score of Vi is measured in

terms of the distance between P [Vi(DQ)] and P [Vi(DR)], and is simply defined as:
U (Vi) = dist (P [Vi(DQ)] , P [Vi(DR)])

Figure 3a shows the top-1 recommended visualization of outstanding-based in-
sight which is generated by [36] from heart disease dataset. The figure shows that
an aggregate visualization based on sum oldpeak (i.e., pressure of the ST segment,
where ST segment is an isoelectric section of the ECG) vs. chest pain types exhibits
a large deviation between the target visualization (disease) and reference visual-
ization (no-disease). That is, patients with a heart disease often suffer more from
asymptomatic chest pains, in comparison to those without heart disease.

Meanwhile, similarity-based insight is the opposite to the outstanding-based in-
sight. This insight type recommends the closest visualizations compared to the refer-
ence dataset [34].
2.2 Correlation-based insight
In the context of data exploration, data analysts generally derive insights from the data
by iteratively computing and visualizing correlations looking for the attribute pairs with
the highest correlations [14], either high positive or negative correlated [32]. Hence, the
correlation-based insight recommends visualizations with the high correlated pair of
measures. A visualization of correlation-based insight Vi is specified by a tuple <B,
C>, where B and C ⊆M. The result of that visualization can be represented as the set
of tuples: < (b1, c1), (b2, c2), ..., (bn, gn)>. Finally, the utility score of Vi is measured
in terms of correlation coefficient of a tuple <B, C>. We use the Pearson correlation
coefficient, which is formally defined as: U(Vi) =

∑n
i=1(bi−b̄)(ci−c̄)√∑n

i=1(bi−b̄)2
√∑n

i=1(ci−c̄)2
. Fig-

ure 3b shows top-1 recommended visualization Vi of correlation-based insight which is
generated from the heart disease dataset, where Vi : VISUALIZE scatter (SELECT
thalach, age FROM HeartDiseaseDB WHERE disease=’Y’). The figure
shows the high negative correlation of two measures (thalach: maximum heart rate
achieved vs. age) where the correlation score is −0.53.
2.3 Distribution-based insight
Many classical statistical tests depend on normality assumptions [3]. Significant skew-
ness and kurtosis clearly indicate that the data is not normaly distributed. Skewness is
a measure of the lack of symmetry, while kurtosis is a measure of whether the data
is heavy-tailed or light-tailed relative to a normal distribution. Generally, data analysts
utilize values of skewness and kurtosis in order to find the attributes and measures that
deviate from the normal distribution [12].

The distribution-based insight recommends the dimensional attributes or measures
that most deviate from the normal distribution (e.g., [14], [12]). A visualization of
distribution-based insight Vi is specified by a tuple<E, COUNT(E)>. The utility score
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for Vi is measured in terms of the third standardized moment µ3 of Vi for the skewness-
based insight and the fourth standardized moment µ4 of Vi for the kurtosis-based in-
sight. Hence, U(Vi) for the skewness-based insight is µ3

σ3 , where µ3 =
∑n

i=1(ei−ē)3
n

and σ =
∑n

i=1(ei−ē)2
n . Meanwhile, U(Vi) for the kurtosis-based insight is µ4

σ4 , where

µ4 =
∑n

i=1(ei−ē)4
n and σ =

∑n
i=1(ei−ē)2

n . In all cases, µ is the mean, σ is the standard
deviation. Figure 3c shows the top-1 recommended visualization Vi of the skewness-
based insight, where Vi : VISUALIZE bar (SELECT ca, COUNT(ca) FROM
HeartDiseaseDB WHERE disease=’Y’ GROUP BY ca). The figure shows
ca is the dimension with the highest skewness score: +2.8, where ca is the number of
major vessels colored by flourosopy.
3 Incomplete Data and Visualization Recommendation Quality
In this section, we first discuss the incomplete data problems (Sec. 3.1). Then, we intro-
duce the quality measures used for assessing the quality of recommendations. (Sec. 3.2).
3.1 The incomplete Data Problem
Data quality is a crucial challenge to data exploration and analytics. Poor quality data
would distort the analysis and reduce the benefits of any data-driven approach causing
profound economic impact. Research has shown that the average cost of poor data on
a business is 30% or more of its revenue [1]. The New York Times has also reported
that analysts spend 50% - 80% of their time preparing dirty data before it can be used
for data analytics [6]. Common examples of data quality challenges include multiple
representations as a result of merging data from a variety of sources, incomplete data,
anomalies, invalid, extreme, erroneous or duplicate values (e.g., [26], [22]).

In this paper, we focus on the incomplete data challenge. Incomplete data is com-
mon problem for data analytics (e.g., [26], [10], [16]). In descriptive analytics, in-
complete data can lead to misleading conclusions such as wrong results for aggregate
queries [39]. Meanwhile, in predictive analytics, incomplete data can introduce bias
into a prediction or classification models (e.g., [16], [10]). Moreover, in the context of
recommendation systems, incomplete data has been shown to result in inaccurate rank-
ings, which has the expected effect of producing misleading recommendations [31].

Several data cleaning techniques have been introduced to overcome incomplete data
issues include substituting missing data values by mean, median, or the most frequent
value (e.g., [27], [24]), or using k-Nearest Neighbor [11], or association rules [38].
However, it is well-known that those imputation methods cannot fully solve the incom-
plete data problem. For instance, recent studies such as [10], [20] compared the perfor-
mance of several imputation methods (e.g., median, linear regression) and showed the
reduction of prediction and classification accuracy using those imputation methods.

Instead of proposing a new imputation method, this work investigates the impact
of incomplete data on the quality of recommended visualizations. To the best of our
knowledge, there is no prior work that focuses on that area. Existing work (e.g., [25],
[33]) used sampling techniques to generate data visualizations and inspect the quality of
the visualizations. However, our problem differs from those studies. Those studies focus
on the quality of visualization while our work focuses on the quality of recommended
visualizations. Another work is Profiler [22], which visualizes the data quality prob-
lems. This study also differs from ours. Profiler recommends visualizations that reveal
data quality problems while our work recommends visualizations that reveal insights.
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Fig. 4: A set of visualizations generated from complete data SC = (U, V,W,X, Y ) and
visualizations generated from incomplete data SI = (U, V,W,X,Z), R is ranking and
U is utility score.

Recent data quality studies investigated the impact of incomplete data in predictive
analytics (e.g., [10], [20]). Those studies compared the performance of various imputa-
tion methods on different supervised classifiers and explored the impact of incomplete
data on the quality of classification and prediction models. Our problem differs from
those studies in two ways. First, those studies focus on the impact of incomplete data
in predictive analytics while our work is studying the impact of incomplete data in de-
scriptive analytics. Second, the context of those studies are on general classification and
prediction problems while our context is on visualization recommendation.

Toward investigating the impact of incomplete data on the quality of visualization
recommendation, we introduce three measures for assessing the quality of recommen-
dations, which explained next.

3.2 Quality of Recommended Visualizations
Recall from definition 1 that the goal of visualization recommendation is to recom-
mend a set of top-k visualizations that reveal insights, in particular, as formulated in the
definition 1, given a multi-dimensional dataset D, the set of top-k visualizations S is
recommended. Let us consider DI is the incomplete version of D. To facilitate the dis-
cussion, let us assume SC is the set of top-k visualizations from the complete data, and
it is equally to S. Moreover, SI is the set of top-k visualizations from the complete data
D. In order to understand the interplay between incomplete data and recommended vi-
sualizations, the top-k set obtained from an incomplete data SI is compared to the top-k
set obtained from the complete data SC .

In this work, we utilize various metrics to assess the quality of the recommended
visualizations in SI compared to SC . First, we utilize the Jaccard distance [30], which
compares the composition of two sets as in Figure 4. The score of Jaccard distance
is calculated by the number of visualizations in common, divided by the total number
of visualizations. Accordingly, when applied to the set comparison, two sets with the
same composition will have the same similarity score. However, in our work, the order
of visualizations in the top-k set is essential. For instance, the top-1 visualization is
more important than the top-10 visualization. Hence, we utilize the second metric, Rank
Biased Overlap (RBO) [37], to consider the visualization ranking when assessing the
quality of recommendations. As shown in Figure 4, RBO considers the composition of
the two sets and their ranking, and it can be seen within the blue dotted line.
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Finally, we have two metrics to evaluates our recommended visualizations. How-
ever, both metrics only compare the composition of the sets without considering the
utility score of each visualization inside the set. Thus, we utilize the third metric called
Cumulative Distance (CD) [21]. This metric captures both the utility score of each visu-
alization U(Vi) and visualization ranking. Figure 4 within the red dashed line illustrates
the scope of the CD metric. The detail of those three metrics is explained next.
Jaccard distance Jaccard distance [30] is defined as the magnitude of the intersec-
tion divided by the magnitude of the union of the two sets, which is formally defined
as: Jaccard(SI , SC) = |SI

⋂
SC |

|SI

⋃
SC | . This distance is bounded by 1. The value is be-

tween 0 for no similarity and 1 for identical sets. According to Figure 4, consider SC
= (U, V,W,X, Y ) and SI = (U, V,W,X,Z), Jaccard distance score of SI to SC is
4
6 = 0.66. The score is obtained from the number of intersection (i.e., four visual-
izations in common U, V,W,X) divided by the union (i.e., six visualizations in total
U, V,W,X, Y, Z). This computation is based on the composition of both sets, the visu-
alization ranking inside the set is not counted. For instance, if the visualizations in SI
is reversed (i.e., SI = (Z,X,W, V, U)), the Jaccard distance score is still same 0.66.
Rank Biased Overlap (RBO) Since Jaccard distance is discounting the visualization
order, we utilize the second metric called RBO [37]. RBO is a popular metric in Infor-
mation Retrieval, which commonly used for the problem of comparing two ranked lists.
RBO is compatible with item order and also compatible with the dis-jointness problem
(i.e., an item is present only in one ranked list). In this work, we adopt RBO to quantify
the quality of recommended visualizations in SI compared to SC .

To calculate RBO score, RBO determines the fraction of content overlapping at
different depths. Consider at each depth d, the intersection of sets SI and SC to depth
d is: ISI ,SC ,d = SI :d

⋂
SC :d. The size of this intersection is the overlap of sets SI

and SC to depth d, XSI ,SC ,d = |ISI ,SC ,d| and the proportion of SI and SC that are
overlapped at depth d is their agreement, A′SI ,SC ,d

=
XSI,SC,d

d . Hence, the RBO score
of SI and SC is defined as: RBO(SI , SC , p) = (1−p)

∑∞
d=1 p

d−1 ∗A′SI ,SC ,d
. Similar

to Jaccard, RBO has a range between 0 and 1, where 0 means disjoint, and 1 means
identical. The parameter p models the user’s persistence which is the probability of the
user continuing to the next visualization. In particular, the smaller p, e.g., p = 0, only
the top-ranked visualization is considered, and the RBO score is either zero or one.
Meanwhile, if p = 1, the evaluation becomes arbitrarily deep due to the probability of
deciding to stop is 0. The suggested p value is 0.95 or 0.97 [37]. In this work, we used
p = 0.95, it means that the first 20 ranks have 86% of the weight of the evaluation.

Consider the example in Figure 4, using RBO the effectiveness score of SI in com-
parison to SC is 0.84 due to the both sets SI , and SC have only one different visualiza-
tion on the tail. The Y is the last visualization in SC , while the Z is the last visualization
in SI . However, if both sets have different on the head (i.e., top-1 visualization), the
RBO score is 0.7. This example shows the visualization ranking is counted in RBO.
Cumulative Distance (CD) We utilize Cumulative Distance as our third metric. We
adopt CD from DCG (Discounted Cumulative Gain) [21]. Similar to RBO, the DCG
metric is generally used in Information Retrieval. This metric is a popular method for
measuring the quality of search results. It assumes that highly relevant results are more
valuable than marginally relevant results, and the top result is more important than the
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tail. The DCG works by combining the degree of relevance and the rank of the search
results in a coherent way. Meanwhile, the DGC score is unbounded. Hence, we can use
the normalized DCG (nDCG). The nDCG is defined as the actual DCG performance for
a search query divided by the ideal DCG performance. To the best of our knowledge,
this work is the first to use CD (i.e., mapped from nDCG) in the context of visualization
recommendation. In our work, the degree of relevance of the visualization Vi is the
utility score U(Vi), where the utility score U(Vi) is calculated according to the type of
insight as explained in Sec 2. The CD score of SI to SC is defined as the DCG of SI
divided by DCG of SC : CD =

∑n
i=1,i∈SI

1
log2(i+1)

∗Ui∑n
i=1,i∈S

1
log2(i+1)

∗Ui
, where Ui is utility score of each

visualization from the complete dataset D.
Accordingly, Jaccard and RBO score from the example in Figure 4 are 0.66 and

0.84. Those scores indicate that both sets have quite a lot of differences. However,
when we look at the CD score, it provides a different perspective. The score of the CD
is 0.99. It is close to 1 (i.e., almost identical). That is because the utility score of Y and
Z is precisely same (U(Y ) = U(Z) = 0.89), which means the degree of importance of
both visualizations (Y and Z) is the same.

4 Experimental Evaluation
In this section, we first discuss our experimental testbed (Sec. 4.1). Then, we present
and discuss our experimental evaluation. (Sec. 4.2).

4.1 Experimental Testbed

Data cleaning methods: In this work, we utilize and compare various well-known data
cleaning methods, which are summarized as follows:
1. Ignore cell: The top-k visual insights are generated directly from the incomplete

dataset by ignoring missing cells. In this approach, the process of handling incom-
plete data is on the cell level (e.g., [10], [20]).

2. Eliminate row : The process of handling incomplete data is on the row or tuple
level. Particularly, a row that contains a missing cell is dropped. If the amount of
missing cells is large, it may end up eliminating a huge amount of data [27].

3. Impute cell: In this approach, we utilize two common imputation techniques:
(a) Median and most frequent imputation: This approach works by calculating the

median of the non-missing values in a column and then replacing the missing
values with the median within each column if the missing values are numerical
data. Meanwhile, if the missing values are categorical data (strings or numer-
ical representations), the missing values are imputed with the most frequent
values within each column (e.g., [10], [20]).

(b) KNN imputation: This approach imputes the missing data by finding the k clos-
est neighbors to the observation with missing data and then imputing them
based on the non-missing values in the neighbors.

Datasets: We conduct our experiments over the following datasets: (1) The Cleveland
heart disease dataset is comprised of 8 dimensional attributes, 6 measures, and 299
tuples [4]. (2) The New York Airbnb dataset is comprised of 4 dimensional attributes,
4 measures, and 30249 tuples [5]. (3) The Diabetes 130 US hospital dataset consists of
14 dimensional attributes, 13 measures and 100 thousand tuples [2]. We conduct our



10 R. Mafrur et al.

(a) Jaccard (b) RBO (c) CD
Fig. 5: Impact of data cleaning methods on effectiveness of outstanding-based insight
using different data cleaning methods, k = 10
experiments over those three datasets, however, due to space limit, the Cleveland heart
disease dataset is the default dataset for presenting the results in this paper.
Incomplete data: We simulate missing data completely at random (MCAR) with dif-
ferent settings: (1) the distribution of missing values is on dimensional attributes A, (2)
the distribution of missing values is on dimensional measures M, and (3) the distribu-
tion of missing values is on the whole data A+M. Recall from definition 1, in this
experiment, we create an incomplete version data DI from D. Then compare the top-k
set SI , which generated from the incomplete data DI to the top-k set SC , which gen-
erated from complete data D. In order to avoid bias, 100 versions of DI with different
random missing seed are generated. Finally, we repeat the experiments with different
settings including: the percentage of missing values (i.e., 0% - 90%), the number of
k, the type of insights, the data cleaning methods, and the quality measures used for
assessing the quality of recommendation.
Default parameters: The default parameters used in our evaluation are k = 10, the
percentage of missing data is 10%, the default of data cleaning method is ignore cell,
the default dataset is Cleveland heart disease. The final result is the average from 100
versions of DI and we present the results with confidence interval CI = 0.95.
Aggregate-based insight: In the case of aggregate-based insight, we use five aggregate
functions (COUNT, AVG, SUM, MIN and MAX) where COUNT is only COUNT(*).
We use different query predicates T to understand the impact of input queries on the
quality of recommendation with different percentages of missing values. For exam-
ple, we want to compare an aggregate visualization generated from the selected subset
dataset chest pain types = ’typical angina’ to the visualization if generated from a ref-
erence dataset chest pain types != ’typical angina’. In this work, to study the impact
of query predicate T on the quality of recommendation, we use three different queries
for heart disease dataset: 1) q1: cp = typical angina vs cp != typical angina; 2) q2: sex
= Female vs sex = Male; 3) q3: exang = exercise induced angina vs exang != exercise
induced angina.

4.2 Experimental Evaluation

In this section, we discuss our experiment results under a combination of different set-
tings including: (1) the adopted data imputation methods, (2) the distribution of incom-
plete data, (3) the types of insights revealed by those visualizations, and (4) the quality
measures used for assessing the quality of recommended visualizations.
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(a) Ignore cell
(b) Median and most frequent
imputation

(c) Impact k with ignore cell

Fig. 6: Impact of data cleaning methods on effectiveness with different datasets - (a,b)
ignore cell vs. median and most frequent imputation, (c) impact of k on effectiveness
using ignore cell method

Impact of the data cleaning methods on effectiveness In this experiment, we analyze
the effectiveness of data cleaning methods under different percentage of missing val-
ues and the quality measures (Jaccard, RBO, and CD). We compare four common data
cleaning methods (e.g., ignore cell, eliminate row, median and most frequent imputa-
tion, and KNN imputation). Since the eliminate row method is included, the maximum
percentage of missing values for this experiment is 30%. Moreover, the missing values
are distributed on the whole data and the results of this experiments are generated based
on the outstanding-based insight. As shown in Figure 5, the best data cleaning method
is ignore cell and the worst is eliminate row. That is because that eliminate row leads
to eliminate a huge amount of data. To the contrary, by ignoring missing cells without
eliminating row, ignore cell outperforms other data cleaning methods. Meanwhile, in
terms of imputation methods, KNN imputation has a better effectiveness than Median
and most frequent imputation method. The result shows that the patterns are consistent
for the three quality measures.
Impact of the data cleaning methods on different datasets In this experiment, we an-
alyze the effectiveness of data cleaning methods under different datasets. We compare
two data cleaning methods, which are ignore cell and median and most frequent impu-
tation and the results of this experiments are generated based on the outstanding-based
insight. The missing values are distributed on the whole data and maximum percentage
of missing values for this experiment is 80%. As shown in Figure 6, overall, the pattern
from three datasets are similar. In particular, in terms of the impact of missing values
(Figures 6a and 6b), the effectiveness is decreasing when the number of missing values
are increased. Moreover, in terms of the impact of k (Figure 6c), the effectiveness is
increasing when k is increased. Meanwhile, if we compare Figures 6a and 6b, the ef-
fectiveness of ignore cell is better than median and most frequent imputation, especially
for heart disease dataset. That is because the heart disease dataset has more dimensional
attributes rather than measures. Imputing missing values on categorical data using most
frequent method reduces the effectiveness. Further, the result of the Airbnb dataset is
contrary to the result of the heart disease dataset. That is because the Airbnb dataset
has more measures rather than dimensional attributes. The airbnb dataset consists of
four dimensional attributes and four measures. However, since no incomplete data on
predicate, the missing values are distributed on three dimensional attributes and four
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(a) Jaccard (b) RBO (c) CD
Fig. 7: Impact of incomplete data on effectiveness of different insight types, k = 10

(a) Jaccard (b) RBO (c) CD
Fig. 8: Impact of k on effectiveness of different insight types, 10% missing values

measures. Based on the results, we can conclude that median and most frequent impu-
tation outperforms ignore cell if the data has more missing values on measures. Impact
of incomplete data on effectiveness Figure 7 shows the impact of incomplete data on
effectiveness under different types of insights. The figure shows that if the percentage of
missing data is higher then it reduces the quality of visualization recommendation. The
most resilient insight type to incomplete data is distribution-based insight (i.e., skew-
ness, kurtosis), then the correlation-based insight, and the less resilient is aggregate-
based insight. The skewness-based insight and kurtosis-based insight are specified by a
single attribute or measure. Hence, losing a certain percentage of data will not change
much of the data in each dimension. Meanwhile, the correlation-based insight is based
on a pair of measures. Hence, the correlation-based insight less tolerance to the in-
complete compared to the distribution-based insight. The aggregate-based insight is the
most complex insight type. It is specified by the combination of dimensional attributes
and the aggregate function of measures. Hence, the aggregate-based insight is the most
sensitive to incomplete data, especially the similarity-based insight.
Impact of k on effectiveness As shown in Figure 8, the higher number of k results in
the higher effectiveness due to the probability of the top-k set from the incomplete data
having same content to the top-k set from the complete data is higher if the number of
k is larger. For instance, Jaccard score is equal to 1, if k = |V|, where the number of k
equal to the number of candidate visualizations, however, it is only applies to Jaccard
not to RBO and CD.
Impact of input queries on effectiveness Figure 9 shows the impact of predicate
queries on the quality of visualization recommendation. Three different queries are
used: 1) q1: cp = typical angina vs cp != typical angina; 2) q2: sex = Female vs sex
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(a) the average of gap (variance)
of utility score

(b) Jaccard (c) RBO
Fig. 9: Impact of input queries on effectiveness of outstanding-based insight, k = 10

(a) Impact dimensional at-
tributes A on effectiveness

(b) Impact measures M on ef-
fectiveness

(c) Impact attributes and mea-
sures A+M on effectiveness

Fig. 10: Impact of dimensional attributes, measures, and attributes + measures on effec-
tiveness of outstanding-based insight, k = 10

(a) Impact k when the distribu-
tion of missing values on A

(b) Impact k when the distribu-
tion of missing values on M

(c) Impact k when the distri-
bution of missing values on
A+M

Fig. 11: Impact of k on effectiveness of outstanding-based insight 10% missing values

= Male; 3) q3: exang = exercise induced angina vs exang != exercise induced angina.
Figure 9a shows that q1 is more resilient to the incomplete data compared to other in-
put queries (Figure 9b and 9c). The results show that if the input query generates top-k
set that the variance among utility score of visualizations is very low, this low variance
leads to more loss on effectiveness especially if the number of missing values is high.
Impact of dimensional attributes, measures, and attributes+measures on effective-
ness Do the incomplete data on dimensional attributes have more impact rather than
on measures? If so, when data analyst has a dataset with missing values on both di-
mensional attributes and measures, then she should give more attention to dimensional
attributes rather than measures. Based on the experiment results, missing values on at-
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tributes and measures have the same impact on the effectiveness. Figure 10 shows the
impact of dimensional attributes, measures, and both on effectiveness with different per-
centage of missing values. The results are generated based on the heart disease dataset
with the distribution of missing values on attributes and measures are equal. The results
show that categorical and numerical data are equally important.
Impact of recommendation quality metrics on effectiveness using different number
of k and different missing data distributions Figure 11 shows the impact of k on
effectiveness if the incomplete data only on attributes, only on measures, and on both
attributes and measures. As mentioned above, missing values on attributes and measures
have the same impact on effectiveness (Figure 11a and 11b). The results also show
how the performance of our three quality measures (i.e., Jaccard, RBO, and CD) under
different number of k. Cumulative distance CD always performs above Jaccard and
RBO. It is because of the default of percentage of missing values is quite small (10%).
Meanwhile, there is an interesting pattern in Figure 11c, the figure shows that if the
number of k is small (e.g., 5, 10), Jaccard performs under RBO, however, when k is
large (e.g., > 20), Jaccard performs above RBO and there is a crossover between both
of them. Hence, the higher number of k results in the higher effectiveness in terms of
Jaccard but not RBO. Jaccard score is equal to 1, if k = |V| where the number of k
equal to the number of candidate visualizations. To the contrary, RBO has a different
pattern, RBO score can be equal to 1 if visualizations inside the two top-k sets are in the
same order, which is hard to be achieved. Hence, by increasing the number of k does
not necessarily result in increased effectiveness in terms of RBO.

5 Conclusions
In this work, we investigate the interplay between incomplete data and recommended
visual analytics under a combination of different conditions. This study lays the founda-
tion for further exploring appropriate ways to deal with incomplete data and minimize
the impact of incomplete data on visualization recommendation. We believe that this
work can provide valuable insights for data analysts rather than blindly believing a rec-
ommendation result over low-quality data.
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