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ABSTRACT
The goal of screening prioritisation in systematic reviews is to iden-
tify relevant documents with high recall and rank them in early posi-
tions for review. This saves reviewing effort if pairedwith a stopping
criterion, and speeds up review completion if performed alongside
downstream tasks. Recent studies have shown that neural models
have good potential on this task, but their time-consuming fine-
tuning and inference discourage their widespread use for screening
prioritisation. In this paper, we propose an alternative approach
that still relies on neural models, but leverages dense representa-
tions and relevance feedback to enhance screening prioritisation,
without the need for costly model fine-tuning and inference. This
method exploits continuous relevance feedback from reviewers
during document screening to efficiently update the dense query
representation, which is then applied to rank the remaining docu-
ments to be screened. We evaluate this approach across the CLEF
TAR datasets for this task. Results suggest that the investigated
dense query-driven approach is more efficient than directly using
neural models and shows promising effectiveness compared to pre-
vious methods developed on the considered datasets. Our code is
available at https://github.com/ielab/dense-screening-feedback.
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1 INTRODUCTION
A medical systematic review aims to answer a specific medical
question by collecting and appraising relevant studies as evidence.
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These reviews often require screening. Screening involves assessing
documents for inclusion or exclusion in the review. A large number
of retrieved documents, a task that is labour-intensive and time-
consuming [6, 33, 34]. Screening is done in two phases: 1) document
titles and abstracts are assessed first for relevance; and 2) full-text
articles from phase 1 are assessed for relevance [20]. These two
phases are conceptually executed sequentially; i.e., after filtering
out a large number of irrelevant documents based on title and
abstract, full text screening is started on the remaining documents.

Screening prioritisation can reduce the time needed to complete
the review and becomes a critical task for systematic review au-
tomation methods, such as technology-assisted review (TAR) [26].
In screening prioritisation, documents are ranked, ideally in a way
that places relevant documents above non-relevant ones, allowing
them to be screened first. This enables downstream tasks such as
full-text screening to begin as soon as a relevant document is found.
If all relevant documents are encountered immediately, then down-
stream tasks might be completed concurrently as other researchers
continue screening the remaining irrelevant documents, thus short-
ening the time to write the review [38]. Screening prioritisation can
also save overall effort (and thus cost) when early stopping is ap-
plied to halt screening after top-k documents are reviewed, thereby
avoiding the exhaustive screening of all documents [9, 42, 48].

There are two main approaches to screening prioritisation [45]:
(1) Query-based: The query associated to the systematic review is
used to rank documents, often using sparse representations such as
BM25 [3, 13] and TF-IDF [2, 40]. Queries are often formed from the
working title of the review [1–3], its research questions [40], or the
Boolean query used to retrieve the documents to screen [1–3, 7].
(2) Model-based: A classification model is trained to discriminate
documents into inclusion or exclusion classes. Most work on this
task has focused on the use of traditional machine learning models
such as SVM [4, 52] and logistic regression [28, 36, 46]. Recent
studies have shown the potential of BERT-based models for this
task [35, 45, 49]. Many techniques are also leveraged together with
these models, such as active learning [10, 11, 18, 28, 37, 42, 52],
and relevance feedback [4, 10, 11, 21, 52], which is also seen in
combination with query-based methods [1, 3, 12–14].

Model-based approaches in TAR often incorporate active learn-
ing, such as CAL [8], where a SVM classifier is trained with continu-
ous feedback from top-ranked documents. Specifically, linear classi-
fiers require relevant seed documents to initiate training. However,
in systematic reviews, seed studies are served for query formulation
and are not always relevant to the topic [44], which may harm re-
trieval effectiveness when initiating the active learning workflow in
a real systematic review setting. Additionally, the size of the training
set also increases due to the active learning mechanism, though the
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classifiers can still benefit by combining knowledge from retrieval
(such as search keywords) regardless of the varying size of the
training set [47]. Recently, a BERT-based TAR workflow [49] has
shown a promising trend, delivering higher effectiveness when pri-
oritising documents for screening in systematic reviews, especially
if applied with a domain-specific backbone without any further
pre-training [32]. A drawback is the method incurs higher costs
in time and computation compared to linear models [32]. Query-
based approaches have mainly been investigated in static, once-off
rankings. These methods could be promising in a continuous feed-
back setting, especially if they can deliver similar effectiveness to
model-based approaches but at a lower computational cost.

In this paper, we follow the query-based approach but adopt
neural encoder models, such as BERT-based dense retrievers, to
perform screening prioritisation that exploits the human reviewer’s
iterative feedback. While BERT-based rankers have been shown
highly effective for screening prioritisation, no relevance feedback
mechanism has been investigated [45]. Methods for using relevance
feedback in combination with BERT-based rankers have been de-
vised for ad-hoc retrieval [43, 51, 53]; however, their limitations
include (1) only considering pseudo-relevance feedback, (2) only
implementing once-off setting (i.e., the feedback mechanism is used
only once to produce a ranking), (3) most methods re-train the
ranker after feedback (through additional fine-tuning) [5, 30, 51].
An exception is Li et al. [29], which we adapt here to screening
prioritisation. The task of screening prioritisation differs in that the
feedback is explicit, and is provided in a continuous manner as re-
viewers perform screening. Typically, adapting current BERT-based
rankers for screening prioritisation with relevance feedback is com-
putationally expensive due to iterative re-fine-tuning. We therefore
explore an unexamined alternative: using dense retrievers with an
efficient strategy for leveraging feedback [29]. Our results show that
this approach is not only efficient but also matches or exceeds the
performance of specialised methods for screening prioritisation.

2 DENSE RETRIEVAL WITH CONTINUOUS
EXPLICIT FEEDBACK

Figure 1 is an overview of our proposed dense retrieval framework
for screening prioritisation with continuous feedback. In Stage
1, users formulate Boolean queries to retrieve documents from
databases such as PubMed. These documents form the pool for title
and abstract screening in Stage 2. A protocol, defining key questions
of the review and the inclusion/exclusion criteria, is also available
at Stage 1. We then propose to utilise topic-related information
from the protocol as the query for dense retrieval against the pool,
and then select top-k documents for user examination. Users as-
sess these documents as relevant or non-relevant using titles and
abstracts. These binary judgments then serve as explicit relevance
feedback, updating the query with Rocchio’s algorithm on the dense
representations [29]: −→𝑞 update = 𝛼 ∗ −→𝑞 + 𝛽 ∗ avg(−→𝑑 +

1 , ...,
−→
𝑑 +
𝑚) + 𝛾 ∗

avg(−→𝑑 −
1 , ...,

−→
𝑑 −
𝑛 ) where

−→
𝑑 + and

−→
𝑑 − are relevant and non-relevant

dense representations (as judged by reviewers) and −→𝑞 is the dense
query. 𝛼 , 𝛽 , and 𝛾 are the Rocchio weights of the previous query,
relevant documents, and non-relevant documents’ dense repre-
sentation, respectively. The refined dense query representation is

Stage 1 Boolean Retrieval

Database (MEDLINE, PubMed etc.) Protocol

Stage 2 Title and Abstract Screening

Collection Query
③ Rerank

Top-k Studies① Feedback
 @ Û

Irrelevant Relevant

② Update

Stage 3 Full-text Screening

Figure 1: Screening prioritisation with feedback.

used to obtain a new ranking over the remaining documents to be
screened. This process is repeated until all documents are reviewed
or a stopping point is reached. Documents identified as relevant at
each iteration can be directly passed to the downstream tasks (e.g.,
full-text screening), accelerating the systematic review process. The
effectiveness and efficiency of Rocchio’s algorithm on dense repre-
sentation of queries and documents have been studied for once-off,
static creation of a ranking based on pseudo-relevance feedback
and for ad-hoc retrieval; however, its use in continuous feedback
and for systematic review screening has not been explored.

3 EXPERIMENT SETUP
Datasets.We rely on the CLEF-TAR 2017, 2018 and 2019 Subtask
2 datasets [22–24] (abbreviated as CLEF 17-19). These datasets
contain queries (topics), documents (title and abstract only) and
relevance assessments associated with real systematic reviews. We
use the working title of the review as the query, which is available
in the protocol file under each topic in the datasets. Each dataset has
one training set and one test set. We use the training set to sample
positive and negative documents for training a dense retriever;
while we use the test set for the iterative ranking and the evaluation.

Dense Retriever Training and Retrieval. For dense retriev-
ers, we use domain-specific (BioBERT [27], PubMedBERT [19], Bi-
olinkBERT [50]) and task-specific (coCondenser [16]) as backbones.
Models were trained using Tevatron [17] with 10 training passages
per topic (comprising 1 positive and 9 negatives) in a triplet loss
< topic, 𝑑+, 𝑑− > [25], on a single NVIDIA V100 with 32GB mem-
ory for 60 epochs. For dense retrieval with relevance feedback, we
used Pyserini [31] for retrieval and FAISS [15] for encoding, and in-
dexing the queries and corpus. Average runtime per collection was
2.6 minutes for training, 1.2 minutes for encoding/indexing, and
5 minutes per retrieval setting (model, Rocchio setting, feedback
size), with time increasing for smaller feedback sizes.

Relevance Feedback Settings. Rocchio’s algorithm has three
parameters 𝛼 , 𝛽 , 𝛾 , for which we have four settings: (1, 1, 1), (1, 0.8,
0.2), (1, 0.5, 0.5), (1, 1, 0). This allows us to explore the impact of
including only positive feedback and varying degrees of negative
feedback. Another parameter is the number of documents included
in each feedback iteration, denoted as 𝑘 , which is typically fixed
throughout an experiment. We set 𝑘 = 25 in line with previous work
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Table 1: Initial ranking refers to the results obtained before screening prioritisation with
continuous feedback. (𝛼 , 𝛽 , 𝛾 ) presents different feedback settings. † indicates statistical
significant difference between dense retrievers and BM25+RM3 for initial rankings,
while * between no feedback and continuous feedback. Statistical significance has been
computed using paired t-test with Bonferroni correction, 𝑝 < 0.05.

Collections Methods
initial ranking (1,1,1) (1,0.5,0.5) (1,0.8,0.2) (1,1,0)

AP Last Rel AP Last Rel AP Last Rel AP Last Rel AP Last Rel

CLEF 17

BM25+RM3 .1439 2228 - - - - - - - -

coCondenser .2064 2477 .2335 *3770 *.2357 *3734 *.2404 2110 *.2370 1979

BioLinkBERT .2402 1917 *.2738 *3620 *.2707 *3538 .2543 2087 .2431 2314
PubMedBERT .1597 2669 *.1914 3560 *.1830 3598 *.1227 2850 *.1144 *3423

BioBERT *.1083 †3278 .1161 *3767 .1175 *3777 .1095 3315 .1076 3113

auth.simple.run1 [4] AP: .2970 Last Rel: 2143

CLEF 18

BM25+RM3 .1958 3276 - - - - - - - -

coCondenser †.2798 5291 *.3420 *4476 *.3472 *4315 *.3520 2590 *.3456 2609

BioLinkBERT †.3601 5047 *.4274 *4027 *.4213 *4015 .3816 2639 .3656 2954
PubMedBERT †.3284 5673 *.3916 3764 *.3818 3773 *.2047 3304 *.1826 *4236

BioBERT .1748 †6335 *.2331 4536 *.2287 4552 .1783 3839 .1692 3701

cnrs_comb [37] AP: .3470 Last Rel: 2406

CLEF 19 dta

BM25+RM3 .1677 2633 - - - - - - - -

coCondenser .1904 1232 .2086 2932 .2158 2893 .2337 2178 .2400 1288

BioLinkBERT .2239 1255 .2567 2822 .2529 2759 .2568 876 .2534 1143
PubMedBERT .2288 891 .2536 2670 .2485 2636 .1914 1256 .1763 2000

BioBERT .1723 1577 .1925 2912 .1927 2857 .1865 1638 .1824 1722

CLEF 19 int.

BM25+RM3 .1620 1178 - - - - - - - -

coCondenser †.3459 1172 .3760 1886 .3725 1872 *.3794 658 *.3747 830

BioLinkBERT †.3876 964 .4151 1628 .4087 1734 *.4088 707 *.4041 961
PubMedBERT †.2960 946 *.3261 1891 *.3178 1619 *.2702 1113 *.2666 1416

BioBERT .1251 1713 .1475 1959 .1495 1957 *.1367 1576 .1332 1579

Table 2: Comparison between our
dense retrieval method and TAR ac-
tive learningwith relevance feedback
for screening prioritisation. B stands
for BioLinkBERT, L for logistic re-
gression; title and pos for different
seed settings; * for statistical signifi-
cance computed as in Table 1.

20 iteration (cut-off @ 500)
Collections Runs AP Last Rel

CLEF 17

dense - B - best .2660 241
tar - B - title *.0674 *358
tar - B - pos *.1431 *331
tar - L - title .2240 *322
tar - L - pos .2407 *318

CLEF 18

dense - B - best .4071 269
tar - B - title *.1292 *378
tar - B - pos *.1971 *342
tar - L - title *.2709 *361
tar - L - pos .3005 334

CLEF 19 dta

dense - B - best .2547 268
tar - B - title *.1177 331
tar - B - pos .1681 356
tar - L - title .1898 343
tar - L - pos .2815 314

CLEF 19 int.

dense - B - best .4100 175
tar - B - title *.0937 *281
tar - B - pos *.1410 *268
tar - L - title *.2352 *257
tar - L - pos *.2578 *257

in the systematic reviews field [41], but also explore the effects of
varying 𝑘 among {5, 10, 15, 25, 50} in one of our research questions.

Baselines.We first compare our method to BM25+RM3 (pseudo
relevance feedback) for the effectiveness in initial rankings, where
the corresponding dense retrievers do not use any feedback. We
then select the best run (AP) submitted to CLEF for the feedback set-
tings, with feedback and without stopping strategies. Specifically:
From CLEF 17, auth.simple.run1 [4], which was a hybrid classifier
with LTR features iteratively trained with explicit feedback. From
CLEF 18, cnrs_comb [37], which was a neural network trained from
a logistic regression and a CALmodel, using task description as seed.
CLEF 19 had no suitable runs to compare with. We also compare
against a recent BERT-based active learning workflow proposed for
TAR [49]. We consider both neural and traditional linear classifiers
for the TAR method. Specifically, we select BioLinkBERT [50] with-
out further pre-training as suggested by [32] and logistic regression
as in [49]. For a fair comparison, we apply the same recording ap-
proach to the TAR methods by concatenating the rank of feedback
documents in each iteration as introduced below, which is different
from the previous recording for TAR detailed in [32]. We test dif-
ferent seed document settings: the review title (title) as above and
one relevant document (pos). We limit both the active learning and
our feedback method to 20 iterations as running BERT-based active
learning is computationally expensive, especially on large topics.
For this setting, we run experiments on an NVIDIA H100 (80GB).

Evaluation. We examine a continuous, iterative relevance feed-
back task where subsets of documents are progressively re-ranked.
Specifically, if 𝑛 documents are ranked at iteration 𝑖 , only 𝑛 − 𝑘 are

re-ranked at 𝑖 + 1, with 𝑘 being the feedback batch size. This results
in ⌈𝑛/𝑘⌉ rankings by the end. We unify these into a single ranking,
maintaining the order from each iterative batch without revisions.
This is distinct from some CLEF-TAR methods that may re-order
already examined rank positions based on new relevance labels, po-
tentially overestimating effectiveness. Our task focuses on whether
relevance feedback can benefit screening prioritisation. Therefore,
we exhaust all candidate documents under each topic and record
the reviewed documents in each iteration. We then measure on
the concatenated list of reviewed documents (feedback) generated
within the dense retrieval framework, instead of examining a new
ranked list as with a reranker. We use Average Precision (AP) and
Last Relevant Found (Last Rel – the position of the last retrieved
relevant document) to measure the effectiveness of the ranking
methods. We also report the run time as the measure of efficiency.

4 RESULTS
In Table 1 we report the results obtained by BM25+RM3, the dense
retrieval methods with/without feedback, and the best runs from
CLEF when available. The results show that all dense retrievers
except BioBERT outperform BM25+ RM3 in terms of AP when no
feedback is considered, strengthening the use case of dense rankers
in systematic review screening. Interestingly, the task-specific dense
retriever (coCondenser) sometimes outperforms domain-specific
retrievers such as BioBERT, which use a biomedical BERT. However,
effectiveness differences are observed in Last Rel: methods that
obtain high AP do not always obtain low Last Rel. For example,
in CLEF 2018, despite significant AP gains by BioLinkBERT and
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PubMedBERT, these are not reflected in Last Rel where, compared to
BM25+RM3, reviewers have to screen about 2000 more documents.

When examining results obtained with explicit relevance feed-
back, we observe that this always improves AP across all dense
retrievers, given a suitable weight setting. We then consider the
impact of different weight combinations have on the dense rele-
vance feedback; for this, we again analyse Table 1. We identify that
most of the top-performing results for the dense retrievers that
use domain-specific backbones are obtained when the same weight
is assigned to the query, relevant documents and non-relevant
document representations (i.e. setting (1,1,1)). For coCondenser,
instead, improvements are generally observed when non-relevant
documents are given lower weight (i.e. (1,1,0) and (1,0.8,0.2)).

In Table 1 we also contextualise the effectiveness of the examined
relevance feedback technique with that of compatible runs submit-
ted to the CLEF shared tasks. Direct comparison is difficult as we are
not aware of the exact settings of feedback used by the CLEF runs
(e.g., whether we use the same feedback size, or if examined docu-
ments are reordered once their relevance is observed). However, the
results suggest that the feedback method studied here provides sim-
ilar effectiveness, and warrants further comparative analysis with
previous methods (for which code is often not released). We then
would like to see how the dense retrieval method, which does not
involve iterative fine-tuning, compares to the popular TAR method,
where a classifier is continuously trained. The TAR workflow con-
sists of an active learning strategy and a classifier. Previous studies
report higher effectiveness with a relevance feedback strategy [32],
that is, screening the top-k documents suggested by the model. We
also follow this practice, as another common strategy, uncertainty
sampling [39] does not promote documents for higher relevance
and is therefore not suitable for screening prioritisation. Another
typical feature of the TAR approach is that it requires at least one
relevant document as the seed to initialise. Typically, the seed doc-
uments are randomly sampled from the relevant document pool
for experiments [49]. This practice may fit scenarios where certain
related studies are identified prior to screening for a systematic re-
view and can lead to higher effectiveness of the classifier. However,
it is not fair to directly compare to the proposed dense retrieval
method, where only topic-related information is used as the query.
Additionally, to measure how these methods can prioritise relevant
documents during the screening phase, we keep tracking those
feedback sets and concatenate them into an overall ranking.

We report our results in Table 2, where a cutoff is set at 20
feedback iterations (totalling 25 x 20 = 500 documents). For dense
retrieval, we select BioLinkBERT as the backbone and report the
best result from the Rocchio settings we use. For the TAR workflow,
we examine BioLinkBERT and logistic regression as the classifiers.
Generally, we find the linear model to be more effective compared
to the BERT-based model for TAR, with a gap of at least 10% in AP
across all the CLEF collections, showing less difference in terms of
Last Rel. When initiated with a relevant document, both methods
show large improvements compared with using the title, which
suggests TAR methods rely on a good seed to start. When turn-
ing to the dense retrieval method, however, it shows significantly
higher effectiveness on both AP and Last Rel, except for in CLEF
19 dta, where TAR with logistic regression has 0.2815 in AP and
314 in Last Rel, whereas the dense retrieval method has 0.2547 and

(1,0.8,0.2) (1,1,0)(1,1,1) (1,0.5,0.5)Rocchio settings
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Figure 2: Distributions of Average Precision (left) and Last
Relevant (right) across all CLEF collections, faceted by Roc-
chio setting and relevance feedback size (i.e. value of 𝑘).

268, respectively. This shows that the query-driven dense retrieval
methods can effectively prioritise relevant documents with fewer
iterations, with no prior reviewed relevant document involved. In
terms of efficiency, in the 20 iteration setting, the dense retrieval
method takes ≈9 seconds per topic, which is competitive with that
of TAR using logistic regression, which takes on average 5 seconds
per topic. However, TAR with BioLinkBERT requires ≈10 minutes
per topic (including fine-tuning and inference in each iteration).

Finally, we study how relevance feedback effectiveness changes
with the batch size (previously 𝑘 = 25). We use the BiolinkBERT re-
triever and vary 𝑘 from 5 to 50; results are shown in Figure 2. For AP,
in general, the larger the feedback size the higher the effectiveness.
Interestingly, we find that a small feedback size (e.g., 𝑘 = 5), which
considers less feedback between query representation updates, is
not more effective than larger ones. This might be because relevant
documents are rare in the assessment pool and thus smaller batches
are more likely to contain only non-relevant documents. As in
previous results, this reduces ranking effectiveness. Further, using
larger feedback sizes is computationally beneficial as it requires
fewer updates and re-rankings of the query representation. We also
observe that for AP, the best weight setting for the representations
varies across feedback sizes, though most differences are not signif-
icant. For Last Rel it appears that settings that put less importance
on the feedback (and especially on the negative one) consistently
yield higher effectiveness than other settings.

5 CONCLUSION
We considered the context of screening prioritisation for system-
atic review automation and adapted a generic relevance feedback
mechanism that exploits dense retrieval. Unique to our settings is
the fact that feedback is explicit and continuous, i.e. is provided
iteratively as users screen documents. Through extensive empirical
experimentation, we reported that this method can achieve similar
or better effectiveness in terms of AP and Last Rel compared to
methods specifically designed for this task. In addition, it is compu-
tationally efficient as there is no need to re-train the ranker at each
relevance feedback iteration, making it suitable for use in practice.
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