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ABSTRACT
Systematic reviews form the cornerstone of evidence basedmedicine,
aiming to answer complex medical questions based on all evidence
currently available. Key to the effectiveness of a systematic review
is an (often large) Boolean query used to search large publica-
tion repositories. These Boolean queries are carefully crafted by
researchers and information specialists, and often reviewed by a
panel of experts. However, little is known about the effectiveness
of the Boolean queries at the time of formulation.

In this paper we investigate whether a better Boolean query than
that defined in the protocol of a systematic review, can be created,
and we develop methods for the transformation of a given Boolean
query into a more effective one. Our approach involves defining
possible transformations of Boolean queries and their clauses. It also
involves casting the problem of identifying a transformed query
that is better than the original into: (i) a classification problem;
and (ii) a learning to rank problem. Empirical experiments are
conducted on a real set of systematic reviews. Analysis of results
shows that query transformations that are better than the original
queries do exist, and that our approaches are able to select more
effective queries from the set of possible transformed queries so as
to maximise different target effectiveness measures.
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1 INTRODUCTION
A systematic review is a type of literature review that appraises and
synthesises the work of primary research studies (called citations
below) to answer one or more research questions. Systematic re-
views play a key role in evidence basedmedicine, informing practice
and policy. For example, in order for medical specialists to diagnose
and recommend treatment for a patient accurately, they rely on the
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most up-to-date clinical evidence; similarly systematic reviews are
used by government agencies to decide upon health management
and policies [15]. Systematic reviews provide this evidence through
a comprehensive literature review.

However, the compilation of systematic reviews can take signif-
icant time and resources, hampering their effectiveness. With an
increasing number of medical studies submitted to databases such
as PubMed, it is becoming ever more difficult and laborious for sys-
tematic review authors to retrieve relevant studies for inclusion in
the review, while minimising the amount of non-relevant citations
they need to assess or appraise. Tsafnat et al. report that it can
take several years to complete and publish a systematic review [26].
When systematic reviews take such significant time to complete,
they can be out-of-date even at the time of publishing.

Retrieval of literature from a medical database for systematic re-
views is performed using complex Boolean queries. Boolean queries
(and retrieval) are the accepted standard for searching citations
when compiling a systematic review [8]. An example of one such
query is visible in Figure 1. These queries contain several Boolean
operators such as OR, AND, and NOT, as well as advanced operators
such as ADJ (which matches search terms within a certain range of
each other), field restrictions, nesting, and the explosion of terms
in an ontology (MeSH). The query in Figure 1 is composed of 19
clauses: each is represented as a line in the query (to which a num-
ber is assigned) and may contain one or more operators.

Query formulation is an important step in the definition of the
search strategy of a systematic review1. A poorly formulated query
may retrieve only a subset of the relevant citations to the review
study or, conversely, may retrieve an extremely large number of
citations, while there may only be few relevant citations. In particu-
lar, the retrieval of a large number of citations is often a problem for
the compilation of systematic reviews because all of the retrieved
citations need to be screened for inclusion in the systematic review
(akin to performing relevance assessment). This appraisal phase,
commonly performed by two reviewers, is expensive and time con-
suming, often requiring several person-months to complete [10],
thus adding to the costs (both monetary and in terms of time) re-
quired for the compilation of a systematic review. Previous work
has in fact reported that it can take experienced reviewers between
30 seconds and several minutes [27] to screen a single study (title,
abstract and metadata). The effect this has on the timeliness of
reviews is highlighted by some notable examples; for example in
Shemilt et al.’s scoping review, 1.8 million studies were screened, of
which only about 4,000 were found to be potentially eligible [24].

1Along with a Boolean query, a search strategy also includes which databases are
queried, the date the search was performed, and the number of citations retrieved.
Note that a search strategy may include more than one Boolean query.
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To ensure the queries used by systematic reviews are of high
quality2, reviews often receive the support of information special-
ists to assist in the query formulation process, and queries are often
submitted to an expert panel for review (along with the protocol of
the systematic review). However, when formulating queries, little is
known about their retrieval performance when applied to answer
the questions posed in systematic reviews [1]. Past research has
found that only 30% of citations are retrieved using the Boolean
queries defined in the protocol of the systematic review [6] (51%
of citations were discovered by pursuing references of references,
and 24% by personal knowledge or contacts3) – a recall problem.
On the other hand, past research has also shown that queries may
retrieve an overly large set of citations compared to those that were
relevant, as it was for Shemilt et al.’s study where only 0.22% of the
retrieved citations were relevant [24] – a precision problem.

In this paper, we question whether the Boolean queries used in
systematic reviews are the most effective possible (highest recall/-
precision), or whether more effective queries are possible and how
these can be obtained. Specifically, we seek to answer the following
research questions:
RQ1: Is it possible to formulate Boolean queries that are more

effective than those originally used within search strategies
of systematic reviews? We investigate this with respect to
recall, precision, Fβ (F0.5, F1, F3), and work saved over sam-
pling (WSS) as target effectiveness measures.

RQ2: If the answer to RQ1 is positive, then: Can alternative, more
effective Boolean queries, generated from the original sys-
tematic review queries, be automatically selected?

To answer RQ1, we devise a set of transformations that can be
applied to clauses of Boolean queries for generating alternative
valid queries to be issued for retrieval. Transformations are applied
at the level of clauses and consist in changing the operators used
in the original queries. In particular, no new terms are added to
the original queries, nor original terms are removed4. Through
the empirical evaluation of alternative queries generated using the
transformations, we show that better Boolean queries are possible,
thus answering RQ1 positively.

To answer RQ2 we cast the problem of formulating Boolean
queries that are more effective than the original, into two machine
learning problems: (1) predicting whether a Boolean query, gener-
ated from the original query by applying a chain of query transfor-
mations, is more effective than the original query, and (2) ranking
the Boolean queries generated from the original query, so that the
queries that are better than the original are ranked at the top of
the suggested alternative queries. The two problems are tackled by
training classification and learning to rank algorithms, respectively.

We empirically show that effective classifiers and rankers can
be built, and these can be tailored to optimise different evaluation
measures. Specifically, we find that the classifiers identify queries
that on average outperform the original queries by 147.72% in

2i.e. meet standards for effectiveness and bias prior to screening citations for inclusion
in the review.
3Percentages add up to more than 100% because the same citations appeared in multiple
sources.
4With the exception of varying the use (i.e. adding or removing) of the MeSH explosion
operator. This operator includes in the query all the MeSH terms that are children of
the MeSH term to which the operator is applied.

1. Diabetic Ketoacidosis/
2. Diabetic Coma/
3. ((hyperglyc?emic or diabet*).tw adj emergenc*.tw.)
4. (diabet*.tw. and (keto* or acidos* or coma).tw.)
5. DKA.tw.
6. or/1-5
7. Insulin Lispro/
8. Insulin Aspart/
9. Insulin, Short-Acting/
10. (glulisine or apidra).tw.
11. (humulin or novolin).tw.
12. (lispro or aspart).tw.
13. (novolog or novorapid).tw.
14. (insulin* adj3 analogue*).tw.
15. acting insulin*.tw.
16. or/7-15
17. 6 and 16
18. (humans/ not exp animals/)
19. 17 and 18

Figure 1: A typical Boolean query found in a systematic re-
view. Note that the line numbers form part of query: the
query is nested by referring to the line numbers, for instance
or/1-5 on line 6means that lines 1 through 5 should be com-
bined with a Boolean OR operator. The fields to search on
(.tw.), the Medical subject headings (/) and their explosion
(subsumption [29] – exp) are also encoded in the query.
precision, 185.13% in F0.5, 99.29% in F1, and 40.45% in F3; while the
rankers identify queries that on average outperform the original
queries by 358.47% in precision, 247.79% in F0.5, 149.91% in F1, and
42.90% in F3. However, neither the classification approach nor the
learning to rank approach were able to outperform the original
queries (baseline) for recall and work saved over sampling (WSS).

2 RELATEDWORK
Computational methods to automate the process of compiling sys-
tematic reviews have recently garnered much attention [4, 11, 17,
18]. While the bulk of prior research has focused on automating the
appraisal phase, e.g., the application of active learning for automat-
ically assessing a portion of the retrieved citations, recent attempts
have considered the search phase and the application of informa-
tion retrieval techniques, through the creation of test collections
and resources [9, 23] and the improvements of retrieval models and
algorithms [17, 22].

With regards to improving queries formulated within systematic
review search strategies, two prior works are relevant. Scells et
al. [22] exploited field restrictions by limiting search terms to four
types of clinical information. The results of this study indicate that
this kind of transformation can significantly reduce the total num-
ber of citations retrieved by a systematic review. Another attempt
at transforming Boolean queries of systematic reviews by Karimi
et al. [10] found that simplifying field restrictions and operators,
and removing lines from queries offered a significant improve-
ment to recall while slightly degrading precision. They also showed
that best-match queries, rather than Boolean, may further increase
search effectiveness. One limitation with that study, however, is the
authors manually modified the queries and re-ran them. Our work
diverges from these two studies, as we seek to automatically apply
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the most effective transformations to Boolean queries, and we are
only interested in Boolean queries (i.e. no best-match queries) as
these are a widely accepted (and often enforced) standard by the
systematic review community.

Techniques such as query generation [12] and query expansion
and reduction [16, 25] have seen success in the medical information
retrieval space for both clinical and consumer purposes. This work
focuses on the clinical space, and does not attempt to modify the
structural syntax of a query. Instead, due to the difficulty of formu-
lating complex queries to satisfy the information need of systematic
reviews, this work focuses on modifying aspects of a query. For
example, it is not known to the researchers formulating a query
if a search term should be restricted to the title, the abstract, or
both before carrying out the search. The size and complexity of
Boolean queries needed to answer the research question outlined
in the systematic review is often too great for a research group;
especially when the question is difficult. Human error is also a con-
tributing factor in the query formulation process which sometimes
introduces error [5, 19, 28] which can lead to less effective queries.
A (semi)-automatic query formulation process reduces the risk of
introducing errors (e.g. recursive rules, spelling mistakes, or invalid
syntax) into the query.

Another challenge once queries have been generated or trans-
formed is selecting the most effective variation. Scells et al. [20]
attempted to apply query performance predictors (QPPs) to iden-
tify the most effective query variation for best-match systematic
review queries. They found that common QPPs are insufficient for
identifying effective queries. The application of existing QPPs to
the structure of Boolean queries is left for future work.

Of relevance to our work is also the research by Kumaran and
Carvalho [14], and Balasubramanian et al. [2] who explored au-
tomatic query reduction methods for ad-hoc and web queries. In
doing so, they faced similar issues in terms of the feasibility of
exploring the full space of query reductions (transformations in our
case). To address this, they devised a number of heuristics to limit
the search space. In addition, they also explored methods that can
automatically select reduced queries, given the original queries, so
as to increase search effectiveness.

Finally, Kim et. al. [13] explored Boolean query suggestions in
professional search domains, e.g., patent retrieval. They generated
Boolean queries from text using decision trees. They then ranked
these queries with a Ranking SVM, exploiting query quality pre-
dictors as features. This research is notable as it demonstrated the
ability for effective Boolean queries to be generated and ranked.

3 METHODS
Next we describe our general method for generating query trans-
formations from the original Boolean query. We then detail the
set of considered transformations (Section 3.1), the approach used
for query candidate generation (Section 3.3) and those for query
candidate selection (Section 3.4), including the features used to
represent query candidates for classification and learning to rank.

Figure 2 provides a schematic view of our method to generate
alternative Boolean queries. The first step consists of parsing the
original Boolean query to extract each clause from the query (re-
member, a clause is a line of the larger Boolean query, see Figure 1).

Original Query

Parsing & Clause Extraction

Application of Transformations to each Clause

Query Candidate Generation

Query Candidate Selection

Transformed Query

Figure 2: Pipeline of the method used for generating trans-
formations of original systematic review queries.

Note that a clause may contain a reference to one or more previous
clauses, as it is the case for line 19 in Figure 1, which combines the
results of the clauses at lines 17 and 18 using the operator AND.

Once clauses are extracted, one or more transformations are
applied to each individual clause, and the resulting transformed
clauses recorded, along with the original clause. For example, a
transformation that changes AND into OR may be applied to the
clause in line 19 of Figure 1. Note that multiple transformations may
be applied. For example, the clause in line 14 could be transformed
by replacing or modifying the ADJ operator, and by removing the
field restriction (.tw) – these will count as two transformations
being applied.

Original and transformed clauses are then assembled together
to form a new candidate query (query candidate generation). For
each clause, only one among all clause variations (original and
transformed versions of the clause) is selected to form a query; no
clause is dropped from or added to a candidate query. This results
in each candidate query having the same number of clauses as
the original query. The output of this process is a set of candidate
queries, which includes the original query.

The next step in the pipeline of Figure 2 is the selection of a
candidate transformed query (or the original query) to replace the
original query. This is achieved via a candidate selection function. A
number of candidate selection functions are described in Section 3.4,
including: a ground-truth informed greedy approach, an oracle
approach, and the approaches based on classification and learning
to rank algorithms. Note that while the first two approaches always
select one transformed query, given an original Boolean query, the
classification and learning to rank approaches may select more than
one transformed query5 to suggest to the user as better queries.

3.1 Transformations
In order to rewrite a query, we define a set of transformations (T )
that are possible for all queries. A transformation is a query rewrit-
ing strategy that belongs to one of three classes of transformations:
Query Reduction (i.e. removing elements from the query), Query Re-
placement (i.e. replacing an element of a query with something else),

5The learning to rank approach may be restricted to select only the top ranked query
(i.e. top-k = 1).
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AND

diabeti*.tw. OR

keto*.tw. acidos*.tw. coma.tw.

OR

diabeti*.tw. OR

keto*.tw. acidos*.tw. coma.tw.

Figure 3: A Logical Operator Replacement transformation
applied to a clause. This diagram represents the clause
(diabet*.tw. and (keto* or acidos* or coma).tw.) in tree
form. Above: the original clause; below: the transformed
clause. The replacement type is AND→OR and the operator
depth is 0.

and Query Expansion (i.e. adding a new element to a query). The
desired effect of these transformations is to increase or the reduce
the number of citations retrieved, as each type of transformation
affects the result set size in different ways. We apply transforma-
tions at the query clause level. We also do not consider typical
query reduction and expansion strategies (e.g. [25, 29]); however
some of the considered transformations are effectively expansions
or reductions, e.g., the explosion of MeSH terms.

Next, we describe the family of transformations that we consider
in this work (more transformations are possible, but their develop-
ment and investigation are left for future work). A family groups
similar transformations together: individual transformations in-
volve specific terms or operators, but the transformations could be
represented by the same set of features (features are described in
Section 3.5).

3.1.1 Logical Operator Replacement. A query replacement trans-
formation which replaces a single Boolean operator in a query. This
transformation considers only the AND and OR operators6. Thus,
an AND may be replaced by OR and vice versa. This transforma-
tion is visualised in Figure 3, where the operator depth represents
the depth in the logic tree of the Boolean operator that is replaced
(depth of root is zero). The transformationAND→ORwill have the
likely impact of increasing recall, often to the expense of precision.
The transformation OR→AND is likely to have the opposite effect.

3.1.2 Adjacency Range. A query replacement transformation
which increases or decreases the range for adjacency operators.
Adjacency operators are used in systematic review queries to limit
the distance between two or more terms. For example, the clause
(cancer adj2 patient) requires the term cancer to appear at
maximum two words away from the term patient. This transfor-
mation is applied at increasing or decreasing intervals of one. The
increase of the adjacency range value is likely to increase recall,
while possibly decrease precision. The decrease of the adjacency
range value is likely to obtain the opposite effect.

6We leave the exploration of the NOT operator to future work.

3.1.3 MeSH Explosion. A query expansion and reduction trans-
formation that adds or removes MeSH automatic explosion. MeSH
is the Medical Subject Heading ontology, and is used in systematic
review queries to retrieve citations that contain the same headings.
An “exploded” MeSH heading matches the specified heading, and
all of the subheadings in the ontology tree structure, effectively
implementing logical subsumption retrieval [29]. The inclusion of
the MeSH explosion has the likely effect of increasing recall, at the
expenses of increasing the number of citations retrieved (and thus
reducing precision). The removal of MeSH explosion is likely to
obtain the opposite effect.

3.1.4 Field Restrictions. A query expansion and reduction trans-
formation that modifies the field restrictions for a term in a query
clause. Field restrictions are used in systematic review queries to
limit term matching to specific fields. This transformation consid-
ers the title and abstract fields (the only two searchable fields that
are not metadata). Terms may be restricted in one of three ways:
restricting to title only, restricting to abstract only, and restricting
to both title and abstract. The use of field restriction has the intent
of increasing precision, often at the likely expenses of recall.

3.1.5 Adjacency Replacement. A query replacement transforma-
tion which replaces adjacency operators (ADJ) with AND operators.
The intuition for this transformation is that the researcher may
have incorrectly used adjacency or incorrectly set the adjacency
value to a very restrictive setting, when instead it would have been
better to only force the presence of the two terms within a citation
rather than within a small window of terms. The Adjacency Re-
placement transformation has the likely effect of increasing recall,
at the possible expenses of precision.

3.2 Application of Transformations
Clause variations are generated on the basis that a transformation
can be applied to a clause. Each transformation (e.g., the Logical
Operator Replacement) may produce 0 or more candidate clauses.
Formally, the set of transformations that can be applied to a clause,
denoted as T ′

c , is defined as:

T ′
c = ∀τ ∈ T |a(τ , c) = 1 (1)

The applicability function a is a Boolean function that determines
if an individual transformation τ can be applied to the clause c:

a(τ ) =

{
1, if τ is applicable to clause c
0, otherwise

(2)

The applicability of τ to a clause is determined by aspects of the
clause, i.e. a transformation cannot be made if the clause does not
contain criteria for the transformation to be applied. Foer exam-
ple, if the clause does not contain any ADJ operators, then the
Adjacency Replacement transformation cannot be applied. Clause
variations cτ1 , cτ2 , cτ3 . . . cτm , denotedC ′, are the application of the
transformations in T ′

c to the original clause c .

3.3 Query Candidate Generation
Candidate query generation is the process of assembling clauses
together to form a Boolean query. For each original clause in the
Boolean query, the original clause or one of its variations is selected
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c1τ1 c5τ1 c7τ1

q c1τ2 c5τ2 c7τ2 q̂

c1τ3 c5τ3 c7τ3

Figure 4: Query transformation chain with three transfor-
mations (τ1, τ2, and τ3) being applied to three clauses (ci ) of
a query (q) to produce the final rewritten query (q̂). Lines be-
tween transformations represent possible transformations.
Solid lines indicate the path followed (possible transforma-
tions for paths that have not been taken are not shown).

to form a candidate query. Figure 4 exemplifies the transformation
of an initial Boolean query q into the transformed candidate query
q̂ through the selection of transformation τ3 applied to clause c1,
transformation τ2 applied to clause c5, and the application of trans-
formation τ3 again, but applied to clause c7.

The result of the candidate query generation process for an
original Boolean query q is a set of queries Q̂q that includes the
query q and all possible query transformations. The size of the set of
candidate queries depends on the number of clauses and the number
of transformations that can be generated for each clause. Assuming
that a query q contains n clauses and for each clause a total of
maximum m variations (including the original) can be created,
then the total number of candidate queries that can be generated
for the original query q is |Q̂q | ≤ mn . Note that this is an upper
limit on the number of variations; often in fact different clauses
may allow for a different number of variations. While numerous
transformations could be applied to some clauses, other clauses
may only allow a restricted set of transformations7. Because of
the high number of possible candidate queries generated, in our
empirical evaluation we shall employ a greedy approach to reduce
the search space of query candidates. This greedy approach is also
used for query candidate selection and is described next among
other query candidate selection approaches (Section 3.4.1).

3.4 Query Candidate Selection
Query Candidate Selection is the process by which a query candi-
date is selected as replacement of the original Boolean query q for
a systematic review. A query q∗ is chosen from the set of candidate
queries Q̂q by maximising a candidate selection function:

q∗ = argmax f (q̂)
q̂∈Q̂q

(3)

The candidate selection function f (q̂) computes a score for the
candidate query q̂. In the case of the greedy and oracle approaches of
Sections 3.4.1 and 3.4.2, scores are computed by accessing retrieval
and ground truth information. In the case of the classification and
learning to rank approaches of Sections 3.4.3 and 3.4.4, instead,
scores are computed in function of the features used to represent
the candidate queries (features detailed in Section 3.5).

While the the greedy and oracle approaches are not applicable in
real settings (because they require relevance assessments that would
7The exact number of query candidates can be computed as

∏n
i=1mi , wheremi is

the exact number of variations that can be produced for a specific clause i .

not be available at the time of compiling a new systematic review),
they are useful for answering research question RQ1 and provide
an indication of upper bound effectiveness attainable8. In addition,
these two approaches may find applicability in real settings in case
a systematic review has been performed in the past, and the search
phase needs to be run again, for example to update the results of
the systematic review9. In these cases, the assessments obtained at
the time of compiling the original systematic review may be used
as ground truth information for the greedy and oracle approaches.

3.4.1 Greedy Candidate Selection. This approach consists of
iteratively selecting query transformations such that at each trans-
formation an objective function is maximised. This is equivalent to
traversing the chain of transformations from the original query to a
target transformed query. At each iteration i , a subset of candidate
queries Q̂iq ⊂ Q̂q is formed by considering all transformations of
the previously selected candidate query q̂i−1 (the original Boolean
query at the first iteration (i = 1) of the algorithm, i.e. q̂0 = q) where
a transformed query q̂i differs from q̂i−1 for only one clause. Note
that, at each iteration (point in the query transformation chain), all
possible transformations are applied and run.

In order to select the candidate query at each iteration, the greedy
candidate selection function f (q̂) is set to compute the number of
citations retrieved and select the query that returns the minimum
number of citations (in the hope of increasing precision). In case of
ties, then ground truth information (relevance assessments) is ac-
cessed to select the query which maximises the number of relevant
citations retrieved. In case of further ties, the query among the tied
ones is selected at random.

The greedy candidate selection approach iterates for t times (i.e.
t sequences of transformations are applied) or until there is no
improvement to the candidate selection function f (q̂), whichever
condition is met sooner.

During the iterations of the greedy candidate selection approach,
subsets Q̂0q , Q̂1q , ..., Q̂tq ⊂ Q̂q are created. These subsets consist of
a portion of the full space of possible query transformations. In
our empirical experiments (Section 4) we considered this subset of
query transformations as the query candidates from which other
approaches, including the oracle, were instructed to select the final
query candidate. While this does not represent the entirety of the
possible queries, it did provide a convenient way to reduce the
search space, making experimentation and evaluation viable. Note
that the query candidate selection methods below are independent
of the subset of query candidates given as input, and could be
applied to subsets obtained in different ways, or, theoretically, to
the full set of transformations. A discussion of the implication of
this choice is provided in Section 7.

3.4.2 Oracle Candidate Selection. In order to determine an up-
per bound on the effectiveness of the query transformations, we
devise an oracle approach that selects query candidates based on
ground truth information (relevance assessments). In particular, we
set f (q̂) = E(q̂), where E(q̂) represents the score assigned to the set
of citations retrieved by candidate query q̂ by evaluation measure

8Note that in our empirical experiment this shall not represent the actual maximum
effectiveness attainable, as only the subset of query transformations generated using
the greedy approach has been explored using the oracle approach, due to the large
number of possible permutations of query transformations.
9The update of systematic reviews is common.
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E, e.g. E may be precision or recall (see Section 4 for a complete list
of evaluation measures used – we implemented an oracle for each
evaluation measure). Thus, the oracle candidate selection function
selects the query q∗ ∈ Q̂q that retrieves the set of citations that
maximises evaluation measure E.
Next, we describe predictive approaches for the selection of trans-
formed queries from the set of candidate queries, namely a classification-
based approach and a learning to rank approach.

3.4.3 Classification-based Candidate Selection. The problem of
selecting a transformed query that improves the search results over
those from the original Boolean query is cast into the classification
problem of predicting whether a transformed query outperforms
the original query. By doing so, we implicitly encode a relationship
between the transformed query and the original query: whether
the former is more effective than the latter. To this aim, we consider
pairs of queries formed by pairing the original query q with each
of the considered query transformations q̂ ∈ Q̂q . Then, we aim to
predict whether E(q̂) − E(q) ≥ 0.

To solve this classification problem we devised a Support Vector
Machine (SVM) classifier with radial basis function (RBF) kernel
K(q̂,q) = exp(−γ | |q̂

¯ j
− q
¯ j
| |2), where q̂

¯ j
and q

¯ j
are values from the

feature vectors representing a candidate query q̂ and the original
query q (features described in Section 3.5). The output of this clas-
sifier is a set of queries (rather than a single query as in the other
approaches) that have been predicted to outperform the original
Boolean query.

Note that a similar problem definition could be used where,
instead of predicting if a query candidate q̂ satisfies E(q̂) −E(q) ≥ 0,
a single query candidate q∗ (with q∗ ∈ Q̂q ) is selected such that it
provides the largest effectiveness gain over the original query q, i.e.
q∗ = argmaxq̂∈Q̂q [E(q̂) − E(q)]. This could have been achieved for
example with a regressor; we leave the exploration of this approach
to future work.

3.4.4 Learning to Rank Candidate Selection. The problem of
selecting a transformed query that improves the search results over
those from the original Boolean query is cast into a learning to rank
problem. In this solution, the objective is to rank query candidates
in order to select the most effective query (or top k queries, if a
broader setting is considered – this is left for future work).

The learning to rank framework is used to learn a ranking model
by training on pairwise preferences between queries, using the
target effectiveness measures E. When the pairwise preferences for
all candidate queries are collected, a partial ordering among query
candidates can be established and the top candidate selected.

To solve this learning to rank problem, we use the Ranking SVM
method, where queries are represented using the features described
in Section 3.5 and the error function is set to:

ϕ(q̂i , q̂j ) =

{
1, if siдn(h(q̂i ) − h(q̂j )) , siдn(E(q̂j ) − E(q̂i ))

0, otherwise
(4)

where the function h is the ranking function to be learnt such that
it minimises the overall number of ranking errors:

h = argmin
∑
q∈Q

∑
Q̂q

ϕ(q̂i , q̂j ) (5)

where Q is the set of original queries used to train the ranker and
Q̂q is the set of query transformations for the original query q (and
including q).
3.5 Features
Next, we describe the features used within the classification and
learning to rank approaches to represent query candidates. Our
approach consists of devising features related to the possible trans-
formations that can be performed on a query. The following are the
features that stem from the transformations described in Section 3.1.

Logical Operator Replacement.
Replacement Type: The type of replacement: either AND→OR
or OR→AND.
Operator Depth: The depth at which the logical operator appears
in the Boolean query.
Adjacency Range.
Distance Change: The change in distance (+1/−1) for the opera-
tor. There is nomaximumdistance, however theminimum absolute
value of the distance is 1.
Operator Depth: The depth at which the adjacency operator ap-
pears in the Boolean query.
MeSH Explosion.
MeSH Depth: The depth at which the MeSH term appears in the
MeSH ontology tree.
Term Depth: The depth at which the MeSH term appears in the
Boolean query.
Field Restrictions.
Field Restrictions Type: The type of restriction. There are three
restrictions possible (title only, abstract only, both title and ab-
stract) and three starting states: six types of replacements in total.
Field Restrictions Depth: The depth at which the restriction ap-
pears in the Boolean query.
Adjacency Replacement:
Operator Depth: The depth at which the adjacency operator ap-
pears in the Boolean query.

For a querywithmultiple transformations, features are computed
by inheriting the features of the parent (i.e. the previous query in
the chain). If the same transformation is applied multiple times
(i.e. it has the same features, with different values), only the most
recently applied features are saved. In the extreme case where
either (i) no transformations can be applied to the query; or (ii) the
resulting candidate queries generated from the transformations do
not improve over the original query, the value of the computed
features are 0.

4 EXPERIMENTAL SETUP
Collection. We examine onemedical literature database (PubMed,

one of the most comprehensive databases) and how literature is
retrieved using one query language (Ovid, one of the most popular
interfaces to PubMed). The experiments performed in this work
used a collection of 51 topics10 from the test collection provided
by Scells et al. [23]. Each topic contains a Boolean query extracted

10The collection originally contained 94 topics; of these 51 only were selected because
these were expressed using the Ovid MEDLINE query language.
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from the search strategies of Cochrane systematic reviews that
have been deemed high quality.

The CLEF2017 Technology Assisted Reviews (TAR) collection [9]
was not used in this work, as it does not contain enough queries
for the same search system (i.e. there are not enough Ovid queries –
the extension of our query parsers to other query formats is left for
future work). However, we use approximately the same number of
topics (51 in this work, 50 in total in the TAR collection). Another
difference between the collection of Scells et al. (used here) and
the TAR collection is that the former considers a wide range of
systematic review types, while TAR only considers Diagnostic Test
Accuracy (DTA) reviews. Note that like TAR, Scells et al.’s collection
also includes as relevant citations that were not retrieved by the
query published in the systematic review; these relevant citations
were instead sourced by reviewers through personal knowledge or
by pursuing references of citations. This means that transformed
queries in our experiments may have returned a higher recall value
than the original query.

Conducting query transformation experiments for a proprietary
query language (Ovid) and database (PubMed) requires the replica-
tion of both. A query parser was written for the query language,
and at this point any transformation was made. The parsed query
was then “compiled” into the Elasticsearch specific query language.
The parsing, transformation, and compilation processes were per-
formed automatically, using the experimental framework described
in work by Scells et al. [21]. Elasticsearch 5.3.0 was used to index
PubMed11 and its default Boolean search functionalities used.

Evaluation Measures. To evaluate the original systematic review
queries and those obtained with the query transformations and
selection methods of this paper, we used precision, recall and Fβ -
measure (β = 1), for which information retrieval researchers are
familiar with. These measures are commonly used to evaluate the
effectiveness of the search phase of systematic reviews. We further
considered F-measure variants with β = 0.5 (F0.5), which assigns to
recall half of the weight than that for precision, and with β = 3 (F3),
which assigns to recall three times theweight than that for precision.
Finally we also used the work saved over sampling measure (WSS)
which considers the work saved (with respect to the number of
studies required to be screened) by comparing the number of not
relevant studies that have not been retrieved (true negatives), those
that have been retrieved, and recall [4]. These measures are also
commonly used to evaluate the search phase of systematic reviews.
Note that we did not use rank-based measures such as average
precision (AP) because systematic review users would normally
assess the entire set of retrieved citations and would ignore any
rank information. Indeed, the underlying retrieval model was the
Boolean model, thus not producing a ranked list as output.

QueryGeneration. The generation of all possible candidate queries
for the transformations considered here would have been computa-
tionally unfeasible. To maintain the empirical evaluation feasible,
we used the greedy candidate selection approach (Section 3.4.1)
to create a subset of transformed query candidates, to which we
applied the other candidate selection methods. For the greedy candi-
date selection approach, we set the maximum number of iterations

11Downloaded on 1st January 2017 as per specifications in Scells et al.’s collection [23].

to t = 5. The resulting number of total query candidates produced
by the greedy candidate selection is 12,686 (average of 248.7 trans-
formed query candidates for each original Boolean query).

Query Candidate Selection. Along with the greedy candidate
selection approach, the methods described in Section 3.4 were im-
plemented and evaluated. For the oracle approach, we implemented
an oracle method for each evaluation measure considered in this
study, resulting in a set of 6 oracle runs.

The library LIBSVM [3] was used to implement the classification-
based candidate selection approach. The parameters of the classifier
and the RBF kernel (c and γ ) were tuned as to maximise the evalua-
tion measures considered in this study. This resulted in a classifier
for each target evaluation measure. The availability of a classifier
specifically tuned for each evaluation measure would allow for
systematic reviewers to select their target evaluation measure ac-
cording to their use case (e.g., a scoping or rapid review may be
well inclined to trading recall for higher precision values). Classi-
fiers were learnt using leave-one-out cross validation, i.e. trained
on 50 topics and tested on 1, and repeating this process 51 times
until testing has occurred on each topic. Parameters were tuned by
performing n-fold cross validation (n = 5) on the training data.

The library SVMrank [7] was used to implement the learn-
ing to rank candidate selection approach. A pairwise Ranking
SVM method was trained and tuned in a similar fashion to the
classification-based candidate selection approach, including the
creation of a ranker for each target evaluation measure.

5 RESULTS
5.1 RQ1: Are Better Queries Possible?
To answer RQ1, we explored the effectiveness of query transforma-
tions generated from the original query and compared their effec-
tiveness. Given the exponential amount of transformed queries that
were possible to generate, we used the greedy approach to both
generate candidate query transformations and to select candidates;
candidate selection was also performed using the oracle approach
on the generated queries. The results are reported in Table 1, where
b refers to statistical significant differences between the retrieval
effectiveness of the queries obtained with the considered method
and the original Boolean query (Baseline). Statistical significance
was computed using a two-tailed t-test and p < 0.01.

In answer to our first research question, we found that it was pos-
sible to generate Boolean queries via the transformations illustrated
in this work that provided higher effectiveness than the original
Boolean queries used in the considered high-quality systematic
reviews. Specifically, the greedy approach selected transformed
queries that on average improved the baseline’s precision and all
F-measure variants (though with no statistical significant differ-
ences). However, these queries traded off recall and resulted in a
lower WSS value. The oracle approaches, instead, consistently out-
performed the baseline, with most improvements being statistically
significant. This highlights how significant the increase of target
effectiveness could be if the right query is selected. In addition, note
that the oracle may not have selected the globally optimal trans-
formed queries, as only the subsets of queries generated during the
greedy candidate selection process were considered.
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Precision Recall F 0.5 F 1 F 3 WSS

Baseline 0.010 0.815 0.012 0.018 0.053 0.801

Greedy 0.034 (+236.33%) 0.725 (-11.11%) 0.034 (+184.24%) 0.039 (+114.74%) 0.068 (+27.29%) 0.720 (-10.10%)

Oraclep 0.078 (+680.68%)b 0.521 (-36.06%)b 0.077 (+537.16%)b 0.086 (+380.70%)b 0.146 (+174.71%)b 0.520 (-35.10%)b

Oracler 0.011 (+8.98%) 0.938 (+15.04%)b 0.012 (+0.86%) 0.015 (-15.35%) 0.027 (-49.97%) 0.865 (+7.99%)
OracleF 0.5 0.076 (+663.67%)b 0.543 (-33.37%)b 0.078 (+540.90%)b 0.088 (+389.45%)b 0.153 (+188.80%)b 0.542 (-32.37%)b

OracleF 1 0.073 (+633.48%)b 0.545 (-33.13%)b 0.077 (+534.48%)b 0.089 (+394.48%)b 0.155 (+192.26%)b 0.544 (-32.12%)b

OracleF 3 0.062 (+522.25%)b 0.577 (-29.21%)b 0.068 (+463.08%)b 0.084 (+367.42%)b 0.159 (+199.48%)b 0.576 (-28.15%)b
OracleWSS 0.023 (+133.45%) 0.925 (+13.41%) 0.024 (+99.43%) 0.027 (+48.91%) 0.047 (-12.10%) 0.903 (+12.69%)

Classifierp 0.025 (+147.72%)o 0.693 (-15.02%) 0.028 (+129.36%) 0.035 (+95.90%) 0.075 (+40.18%)b 0.681 (-15.01%)
Classifierr 0.035 (+253.09%) 0.717 (-12.11%)o 0.037 (+203.61%) 0.042 (+132.98%) 0.073 (+38.25%) 0.711 (-11.22%)
ClassifierF 0.5 0.032 (+224.53%) 0.713 (-12.57%) 0.035 (+185.13%)o 0.040 (+125.70%) 0.077 (+44.45%) 0.704 (-12.11%)
ClassifierF 1 0.026 (+157.78%) 0.693 (-14.98%) 0.029 (+136.51%) 0.036 (+99.29%)o 0.075 (+40.21%)b 0.682 (-14.85%)
ClassifierF 3 0.026 (+160.37%) 0.692 (-15.11%) 0.029 (+138.90%) 0.036 (+101.19%) 0.075 (+40.45%)bo 0.681 (-15.00%)
ClassifierWSS 0.033 (+229.41%) 0.684 (-16.11%) 0.035 (+188.95%) 0.041 (+129.61%) 0.080 (+50.85%)b 0.671 (-16.22%)o

Rankerp 0.046 (+358.47%) 0.653 (-19.90%)b 0.043 (+252.78%) 0.044 (+147.11%) 0.065 (+22.97%) 0.649 (-18.97%)b
Rankerr 0.034 (+237.78%) 0.753 (-7.70%)o 0.033 (+172.19%) 0.036 (+101.95%) 0.058 (+9.60%) 0.748 (-6.64%)
RankerF 0.5 0.046 (+362.90%) 0.619 (-24.12%)b 0.042 (+247.79%) 0.043 (+141.94%) 0.062 (+16.95%) 0.615 (-23.24%)b

RankerF 1 0.048 (+380.17%) 0.614 (-24.69%)b 0.043 (+257.07%) 0.045 (+149.91%) 0.067 (+26.71%) 0.610 (-23.83%)b

RankerF 3 0.056 (+455.82%) 0.645 (-20.92%)b 0.051 (+319.32%) 0.053 (+197.77%) 0.076 (+42.90%) 0.641 (-20.00%)b

RankerWSS 0.053 (+428.60%) 0.610 (-25.25%)b 0.050 (+314.01%) 0.054 (+199.11%) 0.081 (+52.34%) 0.607 (-24.27%)bo

Table 1: Effectiveness of Baseline (original query) and transformed queries selected using Greedy, Oracle, Classifier, and
Ranker. The measure optimised for (the Oracle, Classifier, and Ranker) is denoted with p (precision), r (recall), F0.5 , F1 , F3
(Fβ measures), andWSS (WSS). Values in bold denote the best value obtained for that evaluation measure; values in italics the
best values for each type of approach. b,o indicate statistical significant differences compared to Baseline (b) and Oracle (o).

5.2 RQ2: Can Better Queries be Automatically
Selected?

To answer RQ2, we explored the effectiveness of a classification
(Classifier) and a learning to rank approach (Ranker). The results
are reported in Table 1 (last two row-groups), where o refers to sta-
tistical significant differences (two-tailed t-test, p < 0.01) between
the retrieval effectiveness of the considered method and the query
obtained by the Oracle (we only compare methods trained for an
effectiveness measure E to the Oracle obtained for the same effec-
tiveness measure E). (b is as for Section 5.1). Note that while the
Ranker approach only selected one query candidate, the Classifier
approach may have selected more than one: the reported effective-
ness is the average effectiveness obtained by all candidate queries
selected by the Classifier. We study the variance in effectiveness
among different queries in the selected set in the next section.

In answer to our second research question, we found that the de-
vised automatic methods outperformed the original Boolean query
(Baseline) for each of the target measure they were tuned for, ex-
cept for recall and WSS. For these measures, in fact, no gains were
recorded and for Rankers most of the losses were statistically sig-
nificant. The statistical analysis also highlighted that:
• while gains were made, there were no statistical significant dif-
ferences between the effectiveness of the automatic methods and
the Baseline (except for Recall and WSS);

• yet, percentage improvements over the Baseline for precision
and F-measure variants were consistent;

• while the automatic methods could not reach the effectiveness
of the Oracle, most differences were not statistically significant;

• some settings of the automatic methods outperformed the Greedy
approach (though not significantly).
The results and considerations above highlight that while queries

that improve over the original recall values are possible, as shown
by the Oracler results, the transformed queries obtained with the
automatic methods could not select queries that improved recall,
even when tuned for this job.

6 FURTHER ANALYSIS AND DISCUSSION
Next, we further analyse the results with respect to: (i) the average
number of transformed clauses applied to the original queries to
generate the selected candidate queries, (ii) the selection of origi-
nal queries by the query candidate selection approaches, (iii) the
variation in effectiveness among candidate queries selected by the
classifier approach, (iv) the position assigned by the rankers to
the query selected by the Oracle approach (the ‘best’ query in our
experiments).

6.1 Number of Transformed Clauses
The candidate query selection methods select transformed versions
of the original queries. The query generation method used in the
experiments generated queries with up to t = 5 transformed clauses.
Table 2 reports the average number of transformed clauses that
were counted in the candidate queries selected by each query selec-
tion approach. Considering the oracle, the number of transformed
clauses for the identified best query varied according to the target
measure: recall required the transformation of the least number of
clauses, while WSS and F3 of the most. The same trend is found
when analysing the learning to rank approach. However, this is not
the case when considering the queries selected by the classification
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Method Avg. Tr. Cl. Method Avg. Tr. Cl.

Baseline 0 Greedy 2.4

Oraclep 3.3 OracleF 1 3.3
Oracler 2.3 OracleF 3 3.4
OracleF 0.5 3.3 OracleWSS 3.4

Classifierp 2.3 Rankerp 3.3
Classifierr 2.6 Rankerr 2.2
ClassifierF 0.5 2.6 RankerF 0.5 3.3
ClassifierF 1 2.4 RankerF 1 3.3
ClassifierF 3 2.3 RankerF 3 3.4
ClassifierWSS 2.6 RankerWSS 3.5

Table 2: Average number of transformed clauses that have
been used for the candidate queries selected by eachmethod.
(Baseline is 0 because it refers to the original queries).

approach, for which the least transformed clauses were found when
considering precision and F3, and the most when considering all
other measures but F1. In general, the number of transformations
found in queries selected by the classification method were lower
than those for the oracle and the learning to rank.

6.2 Selection of Original Queries
In our experiments, the set of candidate queries from which the
selection occurs also contained the original Boolean query. We thus
investigated how many times the original query was selected by
each candidate selection approach. Out of 51 topics, the Greedy
approach selected the original queries 3 times. The Oracle approach
selected the original query once when tuned for precision and all
F-measure variants, and twice when tuned for recall and WSS. Out
of all the queries selected by the Classifier, none were the original
one. The Ranker approach only selected the original query for 1 of
the 51 topics when tuned for recall and F1.

6.3 Classification for Query Selection
Unlike the other methods, the classification approach for query
selection returned a set of candidate queries. The distribution of
number of queries selected per topic for each classifier is shown in
Figure 5. On average, we found the classification approach returned
122.62 queries per topic. Of these, 49.51% were incorrectly selected,
i.e. they were not more effective than the baseline (for the target
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Figure 5: Distribution of the number of candidate queries
selected by the classifiers for the topics in the collection.

measure the Classifier was tuned for). Figures 6 and 7 report the
distribution of true positive (selected queries that are more effective
than the original) and false positive for each classifier. We observe
that the classifiers tuned for F1 and precision were the most error-
prone: 51.3% and 51.1% of selected queries were false positives,
respectively. Conversely, we found that the classifier tuned for recall
had the highest classification performance: only 14% of all selected
queries were false positives (did not improve over the baseline). Yet,
those false positives had the most detriment in terms of average
retrieval effectiveness: the queries selected by the Classifier had a
recall lower than that of the original query.

6.4 Learning to Rank for Query Selection
The learning to rank approach ordered candidate queries by de-
creasing predicted effectiveness, and selected the top-ranked query.
We further analysed the query rankings obtained by this method
to identify the average rank position in which the best query was
placed (i.e. the query that actually returned the highest effective-
ness for the target measure, and that was selected by the Oracle
approach). Figure 8 shows the distribution of the rank at which
the best query was placed by each of the six rankers. The figure
suggests that for most topics, the ‘best’ queries is ranked among
the few top queries for the ranker tuned for WSS; while for other
rankers the ‘best‘ query is often ranked far off the top. This analysis
suggests that further improvements may be obtained, at least for
WSS, if the learning to rank selection approach considered k > 1
top queries, rather than k = 1 queries.
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Figure 6: Distribution of true positive classifications for each
classifier.
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Figure 7: Distribution of false positive classifications for
each classifier.
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Figure 8: Rank distribution of the ‘best’ query within the
query ranking obtained with each Ranker.

7 CONCLUSIONS
In this paper we considered Boolean queries used within systematic
reviews and explored whether there exist better Boolean queries
given a target effectiveness measure to be used within the search
phase. To this aim, we developed automatic query transformation
methods alongside query selection methods aimed at automatically
identify queries that would outperform the original one.

Through empirical evaluation using a collection of queries and
assessments extracted from 51 high-quality systematic reviews, we
found that better Boolean queries are possible, and our methods for
automatically identifying these better queries improve the search
and appraisal phases of existing systematic reviews. Our method
of transforming Boolean queries via a query transformation chain
fills the gap that other research has performed manually [10].

While we were able to generate better queries than the original
using classification and learning to rank approaches, somemeasures
(predominately recall), were found to be difficult to optimise for.
We hypothesise that, with more features and training examples, the
effectiveness of these models may improve. Nevertheless, we have
shown that it is possible to optimise for other measures, and these
optimised models do outperform the original query.

An open problem is whether the subset of query candidates gen-
erated by the greedy selection approach is representative enough of
the queries attainable using other approaches. In addition, to apply
the methods of this paper in a real setting, the greedy approach to
reduce the search space should be modified by removing the need
of the ground truth information (which we use only in presence
of ties to further simplify the process). The greedy approach could
still be used when considering re-iterating the search phase for
updating existing systematic reviews.

For future work we will investigate more transformations that
could be applied within the same query transformation chain ap-
proach, such as query expansion techniques via, for example, rele-
vance feedback and pseudo relevance feedback. Additionally, we
seek to identify more features for existing transformations, in or-
der to improve the training process. Finally, we plan to perform
these experiments on a larger set of queries, and on other existing
collections, such as the CLEF2017 TAR collection [9].

We envision the methods developed by the line of research ini-
tiated in this paper to be integrated as a query assistance tool to
assist systematic reviewers at query formulation time.
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