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ABSTRACT
In the medical domain, systematic reviews are a highly trustworthy
evidence source used to inform clinical diagnosis and treatment, and
governmental policy making. Systematic reviews must be complete
in that all relevant literature for the research question of the review
must be synthesised in order to produce a recommendation. To
identify the literature to screen for inclusion in systematic reviews,
information specialists construct complex Boolean queries that
capture the information needs defined by the research questions
of the systemic review. However, in the quest for total recall, these
Boolean queries return many non relevant results.

In this paper, we propose automatic methods for Boolean query
refinement in the context of systematic review literature retrieval
with the aim of alleviating this high recall-low precision problem.
To do this, we build upon current literature and define additional
semantic transformations for Boolean queries in the form of query
expansion and reduction. Empirical evaluation is done on a set of
real systematic review queries to show how our method performs
in a realistic setting. We found that query refinement strategies
produced queries that were more effective than the original in
terms of six information retrieval evaluation measures. In particular,
queries were refined to increase precision, while maintaining, or
even increasing, recall — this, in turn, translates into both time
and cost savings when creating laborious and expensive systematic
reviews.
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1 INTRODUCTION
Systematic reviews are highly reliable sources of evidence, created
by synthesising all relevant studies in a comprehensive literature
review for a highly focused research question. Medical systematic
reviews are held to a particularly high standard because of the role
they play in both evidence-based medicine and health policy as a
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whole. Systematic reviews both inform how medical professionals
diagnose and treat patients, and how governing bodies decide upon
health management and policies [14].

With the rise of web-based databases of medical literature, now
containing tens of millions of medical citations (often in the form of
abstract, title, MeSH headings and metadata, which reference full
studies of, for example, randomised controlled trials), it is becoming
increasingly difficult and highly costly to identify relevant literature
to include in a systematic review [29]. For example, one of the most
popular web-based databases, PubMed, contains approximately 28
million citations of medical studies. While recall is paramount in
that all potentially relevant citations must be retrieved, precision
in the case of systematic review literature retrieval is still critically
important. Systematic reviews can cost upwards of a quarter of a
million dollars [17] and can take several months to complete. A large
portion of this cost can be attributed to the screening phase, where
there are typically many false positives (i.e., citations retrieved
which are not relevant to the research question of the systematic
review). For systematic reviews of highly specific areas of medicine,
finding relevant studies requires a highly specific query which
cannot be too broad (which minimises the false positive rate). For
broad studies such as scoping reviews, the query cannot be too
specific as to limit the number of relevant citations that are not
retrieved (i.e., minimising the false negative rate). This balance
of potentially relevant and potentially non-relevant citations is
currently managed by the intuition and knowledge of highly trained
and skilled information specialists who are deeply familiar with the
search systems in which they formulate their queries, and often,
but not always, also with the topic of the systematic reviews they
are formulating queries for.

The queries that information specialists formulate are highly
complex Boolean queries. Systematic review literature search is de-
pendent on, and has always used, Boolean retrieval for two reasons:
(i) the Boolean query syntax enables specialists searchers to have
fine-grained control over exactly which citations are retrieved, and
(ii) the Boolean query which is published alongside the review, is
used for reproducibility purposes; for example, when the recom-
mendation of a systematic review is in doubt or a review needs to
be updated. Ultimately the Boolean query controls the outcomes
and decisions of a systematic review.

This paper investigates automatic methods for refining queries
used to retrieve literature for systematic reviews. Prior work by
Scells and Zuccon has investigated syntactic transformations of
the Boolean query, and have empirically shown that these could
improve the effectiveness of the queries originally formulated by
expert information specialists [24]. In their approach, a query was
modified at the Boolean query language level; for example, by
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changing an OR operator into an AND operator for a specific
Boolean clause. These transformations did not add or remove the
original query terms; i.e., they did not perform query expansion
or reduction, apart from making use of, or removing, the Medical
Subject Headings (MeSH) explosion operator (which allows for
the retrieval of citations that contain MeSH concepts subsumed by
the concept specified in the query). In this work, we investigate
whether semantic transformations (query expansion and reduction
by drawing upon semantically similar terms) can further improve
the effectiveness of the Boolean queries. Specifically, the context of
this work is to refine existing Boolean queries that have been cre-
ated for the explicit purpose of systematic review literature search.
We define a good query refinement process as one where fewer
citations are retrieved, but the number of relevant citations stays
the same (or with very minor, tolerable reductions). In Informa-
tion Retrieval terms, this equates to increasing precision, while
maintaining or even improving recall. In the case where recall is
improved, note that in the case of systematic reviews, a number of
studies that are used to synthesise results are often found outside
the search process, either by snowballing references (i.e., finding
relevant studies by examining the references of retrieved citations),
or having prior knowledge of the existence of relevant studies.

The methods proposed in this paper are envisioned not to replace
the experience and knowledge of human searchers but, instead, to
assist them formulate more effective queries (e.g., explicitly recom-
mending more effective queries). To investigate this topic, we pose
the following research questions:
RQ1: Which types of transformations are the most effective at re-

fining Boolean queries in systematic review literature search?
RQ2: What impact do unjudged documents have on the effec-

tiveness of refined Boolean queries in systematic review
literature search?

To answer RQ1, we first devised a set of strategies to generate
semantic and syntactic transformations within the Query Trans-
formation Chain Framework of Scells et al. [24]. These were then
applied to the original Boolean queries in an iterative fashion so as
to generate a set of transformed query candidates. The generated
candidate queries were then represented within a feature space,
which was then used to automatically select a transformed Boolean
query that was predicted to improve over the original query (if
no improvement was predicted, then original input query was re-
tained). We then selected the top query from the set of candidates
with a query candidate selector function which maximised a target
evaluation measure. The effectiveness of the query refinement was
determined by comparing the original queries with the ones that
were automatically refined.

To answer RQ2, we perform evaluation by considering the un-
judged documents that may be retrieved by the automatically re-
fined queries. We do so by considering two methods for computing
which portion of the unjudged citations (i.e. the residual) should be
used for computing relevance. The methods outlined for RQ1 and
RQ2 are explained in detail in Section 3.

2 RELATEDWORK
The modification or transformation of a query, such as query ex-
pansion and query reduction, but not limited to any semantic and

syntactic modification (e.g., via synonyms of a term, adding related
terms, removing unnecessary terms, correcting spelling mistakes)
has been shown to significantly improve the effectiveness of a
query [3, 6, 18, 30]. Previous work, however, has focused almost
exclusively on non-Boolean queries (i.e., keyword queries).

In the professional search setting, Kim et al. [10] was able to
generate Boolean queries using a decision tree method and then
automatically suggest queries. A decision tree is generated by se-
lecting unigrams from the top-k pseudo-relevant documents and
nodes in the tree are selected with a probability of that term appear-
ing or not in the pseudo-relevant set (leading to conjunction and
negation). Queries are then suggested by training a learning to rank
model on query performance predictor (QPP)-based features. Both
general-purpose QPPs and Boolean query-specific QPPs are used.
When general-purpose QPPs are used, only the query terms that
are associated with conjunctions are considered. In the context of
systematic reviews, Scells et al. [22] have shown that QPPs were not
effective in predicting the performance of queries in this domain.

Karimi et al. [9] have found that simplifying field restrictions
and operators, and removing clauses from keyword queries (not
Boolean) provides significant improvements in recall for systematic
review queries, while precision was slightly degraded. Keyword
queries, however, have a major limitation: they do not capture com-
plex information needs by restricting sets of documents; i.e., they
operate in a best-match setting where ranking is important1. An-
other perspective is that keyword queries do not allow the informa-
tion specialist explicit control over the set of documents retrieved.

Because Boolean queries are so deeply engrained in the scientific
methodology of constructing systematic reviews, we focus on mod-
ifications or transformations that can be applied to Boolean queries.
Scells et al. have also investigated the modifications to queries in
a systematic review setting in two studies. One study found that
integrating clinical labels into the retrieval model (i.e., annotating
both queries and documents) significantly improved precision while
slightly degrading recall [25]. The other study focused on improv-
ing existing Boolean queries with automatic candidate generation
and selection [24]. While Scells et al. [24] use only syntactic trans-
formations, we advance the state-of-the-art by integrating syntactic
and semantic transformations of queries and then automatically
selecting the best candidate.

3 METHODOLOGY
3.1 Query Transformation Chain Framework
A query transformation chain is the repeated application of one or
more transformations to a query which results in a set of variations
of the original query. A simplified example of a query transforma-
tion chain is shown in Figure 1, where three transformations (τ1,
τ2, and τ3) are applied to three clauses (ci ) of the original query q.
This process of applying transformations to clauses of a new query
continues until the stopping criteria of the candidate selection func-
tion is met. After the transformations are applied, a final, rewritten
query q̂ is produced. A query chain can either be used to generate
all possible variations of a query given the set of transformations,

1Although another task in this domain – screening prioritisation – would benefit from
this.
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c1τ1 c5τ1 c7τ1

q c1τ2 c5τ2 c7τ2 q̂

c1τ3 c5τ3 c7τ3

Figure 1: A query q transformed via a query transformation
chain into a new query q̂. Three transformations (τ1, τ2, and
τ3) are applied to clauses (ci ) of a query at each point in the
chain. The path of each transformation chosen through the
chain is indicated by a solid line. Only the path of transfor-
mations taken for q̂ are shown.

or at each application of transformations, a candidate is selected.
This candidate selection process is described in detail in Section 3.4.

3.2 Query Clause Transformations
Scells et al. [24] considered only syntactic transformations of a
query. We extend that work by integrating several semantic trans-
formations. Syntactic transformations are those that modify aspects
of the query unrelated to the structure of a query: logical operators
or the fields keywords are restricted to. The other form of trans-
formation is semantic, whereby aspects of a query are modified
structurally (through the addition or removal of clauses). In this
work, we use six types of transformations in total. Of these, two are
syntactic and four are semantic. In addition, four of the transforma-
tions can be applied to non-atomic clauses and three can be applied
to atomic clauses. The six transformations in total we use in this
work are presented in Table 1 with the classification (syntactic or
semantic) and the applicability of the transformation (to atomic
or non-atomic clauses). Each transformation is described in detail
below:

(1) Logical Operator Replacement The logical operator re-
placement transformation syntactically replaces the Boolean
operators in a query. For example, (A AND B)→(A OR B).
This transformation only considers AND and OR operators.

(2) Field Restrictions The field restrictions transformation
syntactically modifies the fields an atomic clause is restricted
to in Boolean search. For example,

(cancer[Title] AND lungs[Title])
↓

(cancer[Title/Abstract] AND lungs[Title])

This transformation produces the following modifications
to fields: title to abstract, title to title & abstract,
abstract to title, abstract to title & abstract, title
& abstract to title, and title & abstract to abstract.

(3) MeSH ExplosionMeSH is a medical ontology organised in
a tree structure. Explosion is the subsumption of all nodes
underneath a particular term node in the ontology. MeSH
explosion can be considered a semantic transformation in
that it implicitly adds terms to a query. This transformation
toggles if a MeSH term should be exploded or not. Systematic
review query languages all support some way for explosion
to be toggled, normally in the retrieval model, thus not ex-
plicitly modifying the semantics of a query.

Transformation Classification Applicability

Logical Operator Replacement Syntactic Non-Atomic
Field Restrictions Syntactic Atomic
MeSH Explosion Semantic Atomic
MeSH Parents (new) Semantic Atomic
Clause Removal (new) Semantic Atomic
cui2vec Expansion (new) Semantic Atomic

Table 1: Classification (semantic or syntactic) and Appli-
cability (transformation can be applied to atomic or non-
atomic clauses) of transformations used in this work.

(4) MeSH Parents The MeSH parents transformation acts in
the opposite direction of the explosion transformation: mov-
ing up one level in the tree (if possible), thus selecting a
broader MeSH term. For example, if the MeSH term is Skull
Neoplasms, then this transformation selects the parent term
Bone Neoplasms.

(5) Clause Removal The clause removal transformation se-
manticallymodifies a query by removing a non-atomic clause
from a query. This transformationwill remove atomic clauses
from a non-atomic clause until there are no more atomic
clauses left (at which point the non-atomic clause that groups
them is removed).

(6) cui2vec Expansion The cui2vec transformation is a seman-
tic query expansion transformation that uses a pre-trained
set of clinical concept embeddings [1] to find related key-
words. 2 We first map keywords to concepts using Quick-
UMLS [27], restricting matches to preferred candidates. Next
we find the top-k similar concepts (which are then used as
expansions E) using the clinical concept embeddings via co-
sine similarity; scores are then normalised using the softmax
function. A mapping derived by Jimmy et al. [7] is used to
map concepts to their most common string. In our experi-
ments, we expand to a maximum of five candidates. Finally,
to integrate the new expansions into the Boolean query,
we replace the original keyword with a logical OR operator
that groups the expansions. The fields of the expansions are
inherited from the original keyword. Finally, the original
keyword that was used for expansion is then added to the
atomic clauses in the new non-atomic clause.

3.3 Query Candidate Features
The ranking of query candidates requires discriminative features
in order to select the most effective query. We use 39 features in
total, described in Table 2. Two notable features which we consider
to be novel are ∆, which computes the difference between mea-
surements indicated in Table 2 with †, and ωi which represents the
ith transformation applied to a query in the query chain process.
For performance and effectiveness reasons we do not include gen-
eral purpose QPPs (Query Performance Predictors) as in similar

2As the name suggests, the embeddings are for clinical concepts (rather than terms),
identified as Concept Unique Identifiers (CUI) from the UMLS Metathesaurus. A
single CUI may represent different names or strings in different source vocabularies of
the UMLS Metathesaurus.



TheWebConf ’19, 2019, San Francisco, USA Harrisen Scells, Guido Zuccon, and Bevan Koopman

work [10]. This is because: (i) most QPP measurements rely on
costly retrieval statistics which becomes prohibitive with the num-
ber of queries that are generated, and (ii) previous work has shown
that QPPs are often not correlated with retrieval effectiveness [5, 22]
and thus may hamper the quality of ranking.

3.4 Query Candidate Selection
Query candidate selection is the process by which the next candi-
date to transition to in the query chain is chosen. The formalisation
of candidate selection is described as follows. Following the gen-
eration of candidate queries Q̂q from the initial query q, the next
candidate q∗ is selected as the next transition in the query chain
via the maximisation of function f (q̂) where:

q∗ = argmax f (q̂)
q̂∈Q̂q

(1)

The candidate generation and selection process is repeated until
the stopping criteria is met. Here, we define the stopping criteria
with two objectives: (i) the query chain reaches a depth of five as
in previous research [24], and (ii) the number of retrieved citations
for a candidate query is zero.

When generating queries for training purposes, we only con-
sidered the stopping criteria when the depth of a chain reached
the maximum length of five. We did this so that we would have
sufficient negative training examples. In practice, this resulted in
a severely imbalanced training set with the majority of examples
being negative and only a small portion positive. In training models
to maximise the candidate selection objective function, we discov-
ered empirically that removing the majority of negative examples
(i.e.,from rebalanced the positive and negative examples via nega-
tive sub-sampling) increased the effectiveness of ranking.

The maximisation function f (q̂) can be learnt as a machine
learning problem. In this work, we learn f (q̂) as both a learning to
rank task (similarly as in [24]) and a nearest neighbour task (new
to this work). For both tasks, we train a different model for each
evaluation measure that we seek to optimise. For the learning to
rank task, we use DART: an ensemble of boosted regression trees
which incorporates dropouts [21]. In our empirical testing we found
this method to be the best for this task when compared to other
state of the art techniques such as LambdaMART. For the nearest
neighbour task, we create a model which records the most effective
query in each topic (given an evaluation measure), and the distance
to and reduction in effectiveness for all other queries in that topic.
For an unseen set of candidate queries, each target query in the set
is ranked by minimising the distance and maximising the score of
the queries in the aforementioned model.

3.5 Sampling Query Candidates
In generating training data for automatic query candidate selection
methods, we encountered an exponential growth in queries gen-
erated. This growth is computationally undesirable: for example,
if on average 100 candidates are generated for a query, and the
total length of a chain is 5 then a total of 109 queries would be
generated (nd where n is the number of candidates and d is the
depth). Additionally, if on average it takes 30 seconds to generate a
set of queries and features, then for that query it would take over

950 years to complete. For this reason, we sample queries to cut the
total number of queries that are included for training. Note that the
O(nd ) complexity does not affect testing as we are not exploring
the space of transformations for a query, rather we are ranking
candidates, selecting the top-1 and generating transformations for
that. Our sampling is as follows. For a seed query q, we generate a
set of candidate queries Q̂q . From this set, we take a minimum of
20 candidate queries and if there are more than 20 queries gener-
ated, we take a further 10%. We then cut further by removing any
identical queries that have already been processed. Finally, of the
queries that are generated from the previous step, we take 10% of
these new queries and repeat the process.

3.6 Evaluation
We perform evaluation as a standard ad-hoc search task. Relevance
assessments are obtained from the studies that are reported in
each systematic review as included (relevant), and excluded (non-
relevant). Queries obtained through query refinement may retrieve
citations that were not assessed by the reviews (i.e., unjudged);
thus, relevance assessments are incomplete. At the first stage we
assume all citations which were not judged as non-relevant. Re-
member, however, that unlike in traditional ad-hoc information
retrieval evaluation, no pooling using a large variety of systems
was executed: only one query and one system contributed to the
relevance assessments — other, non retrieved but relevant citations
may very well exist. Thus, later in the analysis of the results, we
use two heuristics to bound the effect of unjudged documents on
the effectiveness of the studied methods. To this aim, we use and
further extend the intuition of residual analysis described for the
rank bias precision measure [19]:

3.6.1 Optimistic Residual. The first heuristic consists of assum-
ing all unjudged citations are relevant, as done for the computation
of the heuristic in rank bias precision [19]. This value provides the
upper bound on the value of the evaluation measure that would be
obtained if all citations were assessed.

3.6.2 Maximum Likelihood Residual. The second heuristics at-
tempts to provide a stricter bound than the optimistic residual. To
do this, the relevance of an unjudged citation is set according to its
probability of being relevant. To estimate this probability, we use
the maximum likelihood estimation computed on the set of judged
documents:

P(relevant|d) =
|relevant|

|relevant| + |non-relevant|

This could be considered as a rough approximation of the number of
relevant and non-relevant citations that would exist, if the relevance
assessments for a query were complete. Intuitively, it provides a
balance between the existing pessimistic view of unjudged citations
and the aforementioned optimistic view of unjudged citations.

4 EXPERIMENTAL SETUP
Experiments were performed on a test collection of 125 system-
atic reviews [26]. The CLEF2017 TAR collection [8] was not used
because that collection contains a smaller number of topics (50 in
total) and therefore less training data. To perform the experiments,
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Feature Description Applicability

Depth How deep in the query the transformation was made. Both
Clause Type The type of clause the transformation was applied to (atomic/non-atomic). Both
Children Count Number of sub-clauses a non-atomic clause has Non-Atomic

Transformation Type The type of transformation (Table 1) made. Both
Logical Operator Replacement Type The type of operator this type of transformation modified. Non-Atomic
MeSH Depth The depth that the MeSH term was exploded from in the MeSH ontology. Atomic
MeSH Parent Whether a MeSH parent transformation is made. Atomic
Restriction Type Which type of field restriction was made when this transformation was applied. Atomic
Clause Removal Whether a clause removal transformation has been made. Atomic
cui2vec Whether a cui2vec Expansion has been made. Atomic
cui2vec Expansions The number of expansions that were made when this transformation was applied. Atomic

MeSH Exploded If the MeSH heading in an atomic clause is exploded or not. Atomic
Truncated If an atomic clause has a character replacement expression (e.g. wildcard). Atomic

Retrieval Size† Total number of citations retrieved by the query Both
# Boolean Clauses† Total number of Boolean clauses in the query. Non-Atomic
# Boolean Keywords† Total number of atomic clauses (keywords) in the query Non-Atomic
# Truncated† Total number of atomic clauses that have a truncated term. Non-Atomic
# Fields† Total number of fields in the query. Both
# MeSH Keywords† Total number of non-atomic clauses that contain a MeSH term. Non-Atomic
# MeSH Exploded† Total number of non-atomic clauses that have an exploded MeSH term. Non-Atomic
# MeSH Non-Exploded† Total number of non-atomic clauses that do not have an exploded MeSH term. Non-Atomic
Average MeSH Depth† The average depth MeSH terms in the query appear. Non-Atomic
Maximum MeSH Depth† The maximum depth MeSH terms in the query appear. Non-Atomic

∆ The difference of a feature between q and q̂, where applicable (†). Both
ωi n additional features that correspond to the sequence of transformations made. Both

Table 2: Features used in the candidate selection task. Applicability denotes to which types of clauses a feature is applicable to:
Atomic refers to clauses which consist of a single keyword, Non-Atomic refers to clauses which group several atomic clauses
with a logical operator, and Both indicates that the feature can be applied to either type of clause.

we used a framework to construct pipelines for each stage of the
experiments [23]. These pipelines and the code for the experiments
are made available online.3

4.1 Query Candidate Generation
In order to train a model to select candidate queries, training data
is required. We achieve this by exploring the space of queries using
the transformation processes described in Section 3.2 up to a depth
of 5. The difference here, however, is that rather than choosing one
query as a candidate query, all queries are chosen. That is, rather
than choosing one query to transition to in the chain, we explore
all possible transitions in order to generate training data. Because
this process is exponential in nature, we sample using the method
described in Section 3.5. In terms of training statistics, on average
7968 queries were generated from a seed query. The highest number
of queries generated for a topic was 129,282 and the lowest was 70.
The total number of training data points was 717,160.

In the testing phase, where candidates for unseen queries are
selected, the transformation process is the same as described in
Section 3.2.

3Anonymised GitHub repository

4.2 Query Candidate Selection
The topics are split into approximately 70% train (90 topics) and 30%
test (35 topics). In the training process, 30% of the train set is used
for validation. To perform automatic candidate selection, we train
two methods: a learning to rank model and a nearest neighbour
approach. The queries that are refined by the candidate selection
process are evaluated with six information retrieval measures (pre-
cision, recall, F0.5, F1, F3 and work saved over sampling (WSS)).
These measures are typically used to evaluate retrieval in the case
of systematic reviews [8, 20, 26]. As the candidate selection function
seeks to maximise an evaluation measure, a model is trained for
each of the evaluation measures considered in this work for both
the learning to rank and nearest neighbour candidate selectors, for
a total of 12 models.

4.2.1 Learning to Rank. The DART learning to rank model is
trained within the QuickRank framework [2]. We parametrise the
DART model with a tree size of 100, a drop-out rate of 0.8, with
uniform sampling, tree normalisation, a learning rate (shrinkage)
of 0.1, and to optimise the ranking of queries using DCG@1.4 We
perform candidate selection using this model with the same ranking

4The exact parameters used to train the model can be found in the experiment pipeline
files.

example.com
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effectiveness metric (DCG@1). The choice of DCG@1 is motivated
by the task of identifying the top-1 ranked candidate query to
transition to in a query chain. We sample the training data by
removing a large portion of negative examples (two-thirds) to train
a DART learning to rank model, as we discovered empirically that
negative examples degrade the ranking quality.

4.2.2 Nearest Neighbour. Our nearest neighbour approach first
records the feature vectors and evaluation measure values for each
query in the training set. Next, for a new unseen query, an evalu-
ation measure value is approximated by searching for a query in
the training set which minimises the distances between the two
feature vectors and maximises the recorded evaluation measure
score. The intuition here is to find the most effective query from
the training set which is most similar to an unseen query. In order
to find the top-1 candidate to continue the query chain, each gen-
erated candidate query is ranked by the approximated evaluation
measure value described previously. For efficiency reasons, we only
store the deltas of distance and score from the most effective query
generated from each seed query. The entire training data is used
to create a nearest neighbour model, as we empirically discovered
that unlike learning to rank, with the nearest neighbour approach
negative examples improved the ranking quality.

5 RESULTS AND ANALYSIS
The main results of the experiments are reported in Table 3, where
statistical significant differences are computed using a paired two-
tailed t-test with p < 0.01. Along with the results obtained when
unjudged citations were considered not relevant, we also report
results obtained by considering the optimistic and probabilistic
(maximum likelihood estimation) residuals: these are indicated by
the subscripts r andmle , respectively.

Overall, the results in Table 3 indicate that the automatic candi-
date selection methods identified refined queries that were better
than the original query (Seed), for the chosen evaluation measures.
Somewhat surprisingly for this task, the nearest neighbour can-
didate selector often outperformed the learning to rank selector,
choosing candidate queries that more often refined the query, rather
than degrading or broadening it. Notably, the nearest neighbour
candidate selector that was trained to maximise the F1 measure
(indicated as F1n in Table 3) was the most effective at selecting
queries that improve over the original seed queries in terms of
precision, F1, and F3.

The summary of the effect each candidate selector has on the
refined queries is presented in Table 4. These results suggest that,
although the number of transformations that are made to queries is
relatively small (sometimes less than five), the queries often differ
significantly from the original seed queries. The final clauses in-
cluded in the queries were impacted by the types of transformations
that were allowed. The following mapping indicates which of the
six transformations align with which headings in Table 4:

• Clauses, Keywords: Clause Removal & cui2vec Expansion
• # AND, # OR: Logical Operator Replacement (# NOT included
for completeness)

• Fields, (Title, Abstract, MeSH, Other): Field Restrictions
• Exp. Mesh: MeSH Explosion
• Avg. MeSH, Max. MeSH: MeSH Parents

The query expansion method cui2vec used was not chosen often
by the candidate selectors: on average, the selected queries did not
contain more non-atomic clauses than the original seed queries
(this is explored in more detail in Section 5.1).

To provide further insight into how each candidate selector
model affects the resulting selected queries, Table 5 presents the
average proportion of fields and Boolean operators in queries. As
the number of clauses in each of the selected queries differ from
each trained candidate selector, this table seeks to show the changes
in the types of fields and types of Boolean operators in proportion
to the size of the query (i.e., with respect to the total number of
Boolean operators and fields). For example, the F1n selector (which
consistently improved the effectiveness of queries over the original
seed queries for all measures) tended to increase the number of
Title fields while decreasing the number of Abstract fields, as well
as increase the number of AND operators while decreasing the
number of OR operators. These refinements to queries align with
the intuition that using the Title field will yield fewer results than
the Abstract (or both fields combined), and that the AND operator is
more restrictive than the OR operator (the intersection of retrieved
citations as opposed to the union).

In terms of directly optimising precision and recall, we further
analyse the Pn , and Rl selectors, as each recorded the highest in-
crease in precision and recall, respectively. The Pn selector showed
a similar proportion of fields to F1n , however the proportion of
AND operators was lower and the proportion of OR operators was
higher. The Rl selector had fewer Title and Abstract fields, and it
removed atomic clauses that did not contain MeSH fields (this is
implied by the fact that no transformation allowed MeSH terms
to be added, and that it was possible for any clause to be removed
with the Clause Removal transformation). In addition, this selector
had a higher number of OR operators than AND operators. Finally,
Table 4 shows that Rl is the only selector to increase the average
MeSH depth, suggesting that his selector often applied the MeSH
Parent transformation.

Next, we explore at a topic level the differences between can-
didate selectors and their effects on evaluation. Figures 4 and 5
present the topic-by-topic effectiveness of the selectors with re-
spect to the target evaluation measures. The differences between
the precision candidate selectors (i.e. the learning to rank selector
and the nearest neighbour selector) is noticeable. The Pl selector
in fact chose many queries which degraded the effectiveness in
terms of precision. On the other hand, the Pn selector had (larger)
gains for a similar number of topics, but when compared to the Pl
selector, it shows both a reduced number of queries for which a loss
was recorded, and a reduced amount of loss, when losses happened.

On the other hand, the Rl and Rn selectors weremore similar, and
many of the same topics had improved effectiveness. The results of
these figures visualise the intuition that refining a query to increase
precision is more difficult than recall. To contrast the previous two
figures, Figure 6 presents the effect the F1n selector had on each
topic in terms of the six evaluation measures considered in this
work. While many queries had improved precision and maintained
or even increased recall (e.g., topic 83), approximately one third of
queries had a reduction in recall. This suggests that there may not
have been enough training examples for this selector to choose a
candidate query that is likely to cause an increase in recall.
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P Pmle Pr R Rmle Rr F0.5 F0.5mle F0.5r F1 F1mle F1r F3 F3mle F3r WSS WSSmleWSSr

Seed 0.0211 0.0307 0.7344 0.8395 0.8635 0.9831 0.0255 0.0358 0.7353 0.0373 0.0493 0.7366 0.1107 0.1331 0.7384 0.8386 0.8626 0.9822

Pl 0.0068 0.0142 0.7100 0.6989 0.7406 0.9591 0.0084 0.0161 0.7104 0.0129 0.0214 0.7109 0.0468 0.0610 0.7117 0.6849 0.7267 0.9450
Pn 0.0207 0.0432 0.5909 0.6403∗ 0.6810∗ 0.8541 0.0248 0.0472 0.5908 0.0355 0.0591 0.5908 0.0977 0.1331 0.5912 0.6396∗ 0.6802∗ 0.8533

Rl 0.0115 0.0195 0.7948 0.8833 0.8978 0.9580 0.0139 0.0222 0.7954 0.0201 0.0292 0.7963 0.0573 0.0716 0.7976 0.7946 0.8091 0.8694∗
Rn 0.0023 0.0088 0.7985 0.8939 0.9111 0.9865 0.0029 0.0094 0.7986 0.0045 0.0113 0.7988 0.0183∗ 0.0270∗ 0.7990 0.8551 0.8723 0.9476

F0.5l 0.0113 0.0237 0.7083 0.7826 0.8046 0.9513 0.0139 0.0254 0.7081 0.0213 0.0333 0.7079 0.0793 0.1011 0.7079 0.7802 0.8022 0.9489
F0.5n 0.0191 0.0225 0.8206 0.8245 0.8355 0.9690 0.0231 0.0271 0.8215 0.0336 0.0393 0.8228 0.0965 0.1118 0.8245 0.8125 0.8235 0.9570

F1l 0.0206 0.0229 0.7623 0.8330 0.8503 0.9787 0.0248 0.0275 0.7631 0.0360 0.0396 0.7644 0.1007 0.1090 0.7661 0.8224 0.8397 0.9681
F1n 0.0416 0.0638 0.6474 0.6726∗ 0.7103∗ 0.9188 0.0486 0.0604 0.6454 0.0655 0.0795 0.6430 0.1472 0.1772 0.6408 0.6719∗ 0.7095∗ 0.9181

F3l 0.0344 0.0248 0.6501 0.6860 0.7104∗ 0.9129 0.0355 0.0297 0.6497 0.0436 0.0424 0.6493 0.1041 0.1147 0.6490 0.6847 0.7091∗ 0.9116
F3n 0.0175 0.0312 0.7279 0.7850 0.8195 0.9583 0.0212 0.0339 0.7191 0.0308 0.0448 0.7155 0.0910 0.1173 0.7144 0.7838 0.8183 0.9570

WSSl 0.0152 0.0199 0.7666 0.7590 0.7961 0.9881 0.0181 0.0237 0.7665 0.0257 0.0335 0.7663 0.0634 0.0812 0.7661 0.7471 0.7842 0.9762
WSSn 0.0229 0.0277 0.7323 0.7955 0.8177 0.9867 0.0275 0.0331 0.7329 0.0397 0.0474 0.7337 0.1131 0.1326 0.7349 0.7916 0.8138 0.9828

Table 3: Comparison of the effectiveness of the original queries in the test set (Seed) and each of the candidate selectors.
Reported are the average values across topics. Values in bold indicate the highest value in that column. Statistically significance
(two-tailed t-test with p < 0.01) is indicated with ∗. Evaluationmethods are abbreviated in the following manner: P→precision,
R→recall, WSS→work saved over sampling. Residual evaluation can be identified with the r (optimistic) and mle (maximum
likelihood) subscripts. The two candidate selection functions can be identified by the evaluation measure they optimise, and
a corresponding letter: e.g., Pl corresponds to the learning to rank selector which maximised precision, and F1n corresponds
to the nearest neighbour selector which maximised F1.

Clauses # AND # OR # NOT Fields Fields
(Title)

Fields
(Abstract)

Fields
(MeSH)

Fields
(Other)

Keywords Exp.
MeSH

Avg.
MeSH

Max.
MeSH

Seed 12.6000 4.7714 7.3714 0.4571 74.4286 27.8286 29.3143 14.3143 2.9714 41.1714 4.2286 3.1763 7.7143

Pl -3.3429∗ -1.3714∗ -1.8857∗ -0.0857 -23.9143∗ -9.2571 -9.3143 -4.8857∗ -0.4571 -12.8857∗ -1.5143∗ -0.2009 -0.5714
Pn -0.1714 0.3714 -0.5429∗ 0.0000 -2.9429∗ 0.3714 -2.7429∗ -0.2000 -0.3714 -0.3429 -0.5143∗ -0.2425 -0.2857

Rl -2.8286 -1.6286 -1.0857 -0.1143 -18.5429 -7.1714 -8.1429 -2.3714 -0.8571 -11.0000 -0.7143 0.3190 -0.3143
Rn -1.0857∗ -1.0286∗ 0.0000 -0.0571 -5.9714∗ -2.5429∗ -1.9429∗ -1.0000∗ -0.4857 -2.6286∗ -0.2857 -0.0877 -0.2286

F0.5l -2.3429∗ 0.0000 -2.2286∗ -0.1143 -13.4000∗ -3.7143∗ -4.9429∗ -4.2571∗ -0.4857 -7.2857∗ -1.2571∗ -0.4887 -1.4571∗
F0.5n -0.3143∗ -0.1429 -0.1429 -0.0286 -2.3143∗ -0.2571 -1.4000∗ -0.2857 -0.3714 -0.3143∗ -0.4571∗ -0.1620 -0.3429

F1l -4.4286∗ -1.5143∗ -2.6286∗ -0.2857∗ -21.7143∗ -6.9143∗ -7.5143∗ -6.4857∗ -0.8000 -11.8000∗ -2.0571∗ -1.6380∗ -3.9143∗
F1n -0.3143 0.5143∗ -0.8286∗ 0.0000 -3.3429∗ -0.5714 -2.0286∗ -0.4000 -0.3429 -0.7714 -0.7714∗ -0.2804 -0.3143

F3l -0.4857 0.2857 -0.7714∗ 0.0000 -6.6000 -2.6000 -2.9429 -0.6857 -0.3714 -2.6286 -0.2000 -0.2266 -0.3429
F3n 0.0000 -0.0286 0.0286 0.0000 -1.0571 -0.3429 -0.3429 0.0000 -0.3714 0.0000 -0.8286∗ -0.3331∗ -0.2857

WSSl -2.2857∗ -0.8571∗ -1.3714∗ -0.0571 -12.7429∗ -5.0286∗ -5.1143∗ -2.2000∗ -0.4000 -6.1143∗ -0.4857∗ -0.4084 -0.8857
WSSn -0.8571∗ -0.2571 -0.5714∗ -0.0286 -5.9714∗ -2.1143∗ -2.4000∗ -1.0000∗ -0.4571 -2.8000∗ -0.6571∗ -0.1420 -0.3143

Table 4: Summary of the query refinement process. Shown in the table is the average difference in change of different aspects of
queries obtained by each selector. A negative value indicates a reduction in the corresponding aspect, a positive value indicates
an increase, and a zero value indicates that aspect was not changed. For comparison, the average values of the original Seed
queries are reported as well. Clauses refers to the number of Boolean clauses in the query. # AND, # OR and # NOT indicate
how many of the corresponding operators were in the query. Fields indicates how many fields were in the query in total;
this is further divided into how many of those were Title, Abstract, MeSH, or other (e.g., dates or publication type). Exp. MeSH
indicates the number ofMeSH terms that have been exploded, andAvg. MeSH &Max. MeSH indicate the average andmaximum
depth in the ontology of the MeSH terms. Two-tailed statistical significance with p < 0.01 between the Seed queries and the
queries selected by each model is indicated with ∗.

Finally, we compare two example queries by examining the trans-
formations that have been applied to them. The queries chosen for
comparison are from topics 73 and 154. These topics were respec-
tively the best and worst performing ones when query transfor-
mations were obtained through the F1n candidate selector (in the

case of topic 154 it was chosen because the query for 106 was too
long to fit into a column). The transformed query for topic 73 ob-
tained a large increase in precision, while maintaining recall, while
the transformed query for topic 154 obtained a minor decrease in
precision and a large decrease in recall.
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1. measles.tw.
2. rubeola.tw.
3. morbilli*.tw.
4. exp Measles/
5. exp Measles virus/
6. or/1-5
7. exp Vitamin A/
8. vitamin a.ti,ab,sh.
9. retinol.ti,ab,sh.
10. exp Dietary Supplements/
11. or/7-10
12. bitot*.tw.
13. spot*.tw.
14. 12 and 13
15. vision*.tw.
16. visual*.tw.
17. eye*.tw.
18. sight*.tw.
19. or/15-18
20. xerosis*.tw.
21. exp Vision Disorders/
22. Xerophthalmia/
23. Night Blindness/
24. xerophthalmia*.tw.
25. exp Blindness/
26. keratomalacia.tw.
27. blind*.tw.
28. 14 or 19 or 20 or 21 or 22 or \
23 or 24 or 25 or 26 or 27
29. 6 and 11 and 28

(a) Original query.

1. measles.ti.
2. rubeola.tw.
3. morbilli*.ti.
4. exp Measles/
5. exp Measles virus/
6. or/1-5
7. Retinoids/
8. vitamin a.ti,ab,sh.
9. retinol.ti,ab,sh.
10. exp Dietary Supplements/
11. or/7-10
12. bitot*.tw.
13. spot*.tw.
14. 12 and 13
15. vision*.tw.
16. visual*.tw.
17. eye*.tw.
18. sight*.ab.
19. or/15-18
20. xerosis*.tw.
21. exp Vision Disorders/
22. Xerophthalmia/
23. Night Blindness/
24. xerophthalmia*.tw.
25. exp Blindness/
26. keratomalacia.tw.
27. blind*.ti.
28. 14 or 19 or 20 or 21 or 22 or \
23 or 24 or 25 or 26 or 27
29. 6 and 11 and 28

(b) Transformed query.

Figure 2: Comparison between the original query (left) and
a transformed query (right) for topic 154. The transformed
querywas chosen using the F1n selector, andwas the least ef-
fectively refined query. Note that on line 28 for both queries
there is a carriage return as the line was too long.

The original and the transformed query for topic 73 are shown in
Figure 3. The transformations made to the query were that lines 59
and 75 were both removed, and lines 40, 46 and 75 (which become
line 66 in the transformed query) had their operators changed
(from OR to AND). The original and the transformed query for
topic 154 are shown in Figure 2. The transformations made to its
query were that lines 1, 3, and 27 had their fields changed from
Title and Abstract to only Title, and the MeSH term of line 7 was
expanded to its parent.

Upon examination of the queries in Figures 3 and 2, it is clear
that they considerably differ in length: one may question whether
the length difference (in number of clauses) is associated with
the effectiveness difference — according to this hypothesis shorter
queries would generally perform worse than longer queries. How-
ever, upon further analysis we found that this is not the case. In fact,
the Pearson’s r correlation between the F1 evaluation measure and
the number of Boolean clauses in each query was only r = 0.175.
Similar results were obtained when considering the other evalua-
tion measures used in this study, thus suggesting that there is no
direct relation between query length in terms of number of Boolean
clauses and retrieval effectiveness. This finding is similar to what
was obtained by Scells et al. when studying query performance
predictors for this domain [22].

The next two sections explore our research questions with re-
spect to the impact of semantic transformations in the candidate
selection process, and the effect unjudged citations had on the
evaluation.

5.1 Impact of Semantic Transformations
To answer RQ1: ‘Which types of transformations are the most ef-
fective at refining Boolean queries in systematic review literature

1. controlled clinical trial.pt.
2. placebo.ab.
3. clinical trials as topic/
4. randomly.ab.
5. trial.ti.
6. randomized.tw.
7. randomized controlled trial.pt.
8. or/1-7
9. humans/
10. animals/
11. 9 not 10
12. 8 and 11
13. abdominal.tw.
14. abdomen.tw.
15. chest.tw.
16. thoracic.tw.
17. trunk.tw.
18. or/13-17
19. exp Wounds, Penetrating/
20. 18 and 19
21. abdominal.tw.
22. abdomen.tw.
23. chest.tw.
24. thoracic.tw.
25. trunk.tw.
26. or/21-25
27. trauma*.tw.
28. injur*.tw.
29. penetrat*.tw.
30. stab*.tw.
31. or/27-30
32. 26 and 31
33. Splenic.tw.
34. spleen.tw.
35. stomach.tw.
36. gastric.tw.
37. or/33-36
38. rupture*.tw.
39. burst*.tw.
40. 38 or 39
41. 37 and 40
42. heart.tw.
43. cardiac.tw.
44. aortic.tw.
45. aorta*.tw.
46. or/42-45
47. rupture*.tw.
48. 46 and 47
49. exp Abdominal Injuries/
50. exp thoracic injuries/
51. 20 or 32 or 41 or 48 or 49 or 50
52. Blood.tw.
53. Plasma.tw.
54. 52 or 53
55. Autologous.tw.
56. 54 and 55
57. Autohaemotransfusion*.tw.
58. Auto-haemotransfusion*.tw.
59. Autohemotransfusion*.tw.
60. Auto-hemotransfusion*.tw.
61. Autotransfusion*.tw.
62. Auto-transfusion*.tw.
63. or/56-62
64. cell*.tw.
65. blood.tw.
66. 64 or 65
67. transfusion*.tw.
68. salvage.tw.
69. save*.tw.
70. or/67-69
71. 66 adj5 70
72. exp Blood Transfusion, Autologous/
73. exp Blood Loss, Surgical/
74. exp Blood Transfusion/
75. 63 or 71 or 72 or 73 or 74
76. 51 and 75
77. 12 and 76

(a) Original query.

1. controlled clinical trial.pt.
2. placebo.ab.
3. clinical trials as topic/
4. randomly.ab.
5. trial.ti.
6. randomized.tw.
7. randomized controlled trial.pt.
8. or/1-7
9. humans/
10. animals/
11. 9 not 10
12. 8 and 11
13. abdominal.tw.
14. abdomen.tw.
15. chest.tw.
16. thoracic.tw.
17. trunk.tw.
18. or/13-17
19. exp Wounds, Penetrating/
20. 18 and 19
21. abdominal.tw.
22. abdomen.tw.
23. chest.tw.
24. thoracic.tw.
25. trunk.tw.
26. or/21-25
27. trauma*.tw.
28. injur*.tw.
29. penetrat*.tw.
30. stab*.tw.
31. or/27-30
32. 26 and 31
33. Splenic.tw.
34. spleen.tw.
35. stomach.tw.
36. gastric.tw.
37. or/33-36
38. rupture*.tw.
39. burst*.tw.
40. 38 and 39
41. 37 and 40
42. heart.tw.
43. cardiac.tw.
44. aortic.tw.
45. aorta*.tw.
46. and/42-45
47. rupture*.tw.
48. 46 and 47
49. exp Abdominal Injuries/
50. exp thoracic injuries/
51. 20 or 32 or 41 or 48 or 49 or 50
52. Blood.tw.
53. Plasma.tw.
54. 52 or 53
55. Autologous.tw.
56. 54 and 55
57. Autohaemotransfusion*.tw.
58. Auto-haemotransfusion*.tw.
59. Auto-hemotransfusion*.tw.
60. Autotransfusion*.tw.
61. Auto-transfusion*.tw.
62. or/56-61
63. exp Blood Transfusion, Autologous/
64. exp Blood Loss, Surgical/
65. exp Blood Transfusion/
66. and/63-65
67. 51 and 66
68. 12 and 67

(b) Transformed query.

Figure 3: Comparison between the original query (left) and
a transformed query (right) for topic 73. The transformed
query was chosen using the F1n selector, and was the most
effectively refined query.

search?’, a comparison between candidate selection transforma-
tions was made. The summary of query refinement are presented
in Table 4. On average, none of the approaches selected queries
which performed explicit query expansion. Indeed, a deeper anal-
ysis of the results identifies that none of the queries are longer
than the original seed. This suggests that, in this context, query
expansion may not be an effective way to refine a query. On the
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Title Abstract MeSH Other AND OR NOT Exp.
MeSH

Seed 0.3327 0.3589 0.2711 0.0374 0.3542 0.6172 0.0286 0.1227

F1l 0.3366∗ 0.3764∗ 0.2324∗ 0.0547 0.3589∗ 0.6298∗ 0.0113∗ 0.0704∗
F1n 0.3432 0.3370∗ 0.2901 0.0297 0.4480∗ 0.5223∗ 0.0297 0.0819∗

F3l 0.3730 0.3500 0.2472 0.0298 0.4287 0.5417∗ 0.0296 0.1196
F3n 0.3376 0.3706 0.2625 0.0293 0.3447 0.6267 0.0286 0.0819∗

F0.5l 0.3513∗ 0.3675∗ 0.2402∗ 0.0410 0.4406 0.5392∗ 0.0202 0.1048∗
F0.5n 0.3590 0.3501∗ 0.2621 0.0289 0.3387 0.6359 0.0254 0.1044∗

Pl 0.3326 0.3657 0.2656∗ 0.0360 0.3246∗ 0.6402∗ 0.0352 0.1024∗
Pn 0.3626 0.3198∗ 0.2882 0.0294 0.4263 0.5441∗ 0.0296 0.0936∗

Rl 0.3161 0.3357 0.3221 0.0262 0.3196 0.6567 0.0236 0.1153
Rn 0.3252∗ 0.3822∗ 0.2647∗ 0.0280 0.2729∗ 0.6992 0.0278 0.1223

WSSl 0.3378∗ 0.3559∗ 0.2771∗ 0.0293 0.3102∗ 0.6641∗ 0.0256 0.1358∗
WSSn 0.3314∗ 0.3504∗ 0.2899∗ 0.0283 0.3790 0.5927∗ 0.0283 0.1049∗

Table 5: Average proportion of clauses for each field, each
Boolean operator, and each Exploded MeSH term, across se-
lected queries by each query selector approach. The original
queries (Seed) are included for comparison. Statistically sig-
nificance (two-tailed t-test with p < 0.01) between the Seed
and listed selectors is indicated with ∗.

other hand, query reduction was chosen very often, more so by the
learning to rank selector — which tended to remove clauses from
queries more often than the nearest neighbour selector. While the
candidate queries that had the cui2vec Expansion transformation
applied were not chosen by either of the selectors, theMeSH Parent
transformation was. The Rl selector chose queries with an aver-
age MeSH depth of 0.32 higher than the original seed query. This
suggests that to maximise an increase in recall, this selector opted
to chose a query that broadened the scope of MeSH keyword than
to add new, somewhat related text-matching keywords. Overall
the results indicate that, among the investigated transformations,
syntactic transformations play a larger role in query refinement
than semantic transformations.

5.2 Impact of Unjudged Citations
To answer RQ2: ‘What effect do unjudged citations have on the ef-
fectiveness of refined Boolean queries in systematic review literature
search? ’, the evaluation measures and the estimates obtained with
the two residual heuristics are compared. As reported in Table 3,
these results show that the effect of unjudged citations is not sig-
nificant. When a selector chooses candidate queries that perform
statistically significantly worse for an evaluation measure, the resid-
ualmle results are also significantly worse. Nonetheless, Table 3
still shows that in many cases, effectiveness increases when un-
judged citations are factored into evaluation. For example, the Pn
selector does not obtain increases in precision over the seed queries,
when unjudged citations are considered non-relevant. However,
when using themle heuristic, precision is higher, though with the
r heuristic, precision is also lower. In fact, from analysing the r
heuristic, we can determine that the Pn selector retrieves many
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Figure 4: Per-topic gains in precision (top) and recall (bot-
tom) over the Seed query for the candidate selectors which
maximised precision (Pl and Pn ).
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Figure 5: Per-topic gains in precision (top) and recall (bot-
tom) over the Seed query for the candidate selectors which
maximised recall (Rl and Rn ).

more non-relevant citations than the Pl selector. For these rea-
sons, estimates for residual should be considered when performing
high-recall tasks such as this; or in tasks that modify or change
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Figure 6: Per-topic gains over the Seed query in the evalua-
tion measures considered in our study. Here we considered
the nearest neighbour candidate selector that maximised F1
(F1n .)
queries in some way. This is especially important when relevance
assessments are largely incomplete, and no system variation was
considered when forming the pool for assessments: this was the
case for systematic review collections available for Information
Retrieval research [8, 26].

6 CONCLUSIONS
This paper presented three novel semantic transformations that in-
tegrate with previous work on systematic review query generation.
In addition, we cast the task of query generation from previous
work [24] to query refinement — where newly generated queries
should improve precision while maintaining or improving recall. To
this end, we employed two new candidate selector functions, one
based on learning to rank, and one based on a nearest neighbour
algorithm. Both candidate selectors were trained to maximise six
evaluation measures. When evaluating query refinement, we also

revealed that the refinement retrieved unjudged documents; we
accounted for these in the evaluation by computing the residuals
of the evaluation measures. We did so by considering both an op-
timistic residual and a probabilistic residual (based on maximum
likelihood estimation). Our results showed that the nearest neigh-
bour model was able to more effectively select query refinements
than the learning ro rank approach. Our experiments have shown
that the explicit query expansion method (cui2vec Expansion) pro-
posed in this work is not viable for query refinement (as candidates
with other transformations outrank it). However, the explicit query
reduction method (Clause Removal), and to a lesser extent the im-
plicit query expansion method (MeSH Parents) can, in fact, be used
to help refine queries.

The detailed analysis of how each set of selected queries was
transformed by candidate selectors suggested that the syntactic
transformations were in fact more suited to refinement than seman-
tic transformations. Our experiments also showed that the effect of
unjudged citations on evaluation is significant: unjudged citations
should be accounted for in some way when performing evaluation.

Future plans for the task of automatic query refinement for
systematic review literature search will focus on exploring other
methods for candidate selection and other features, as well as im-
proving the sampling of queries in the exploration/generation phase
for collecting training data. With this in mind, the current sam-
pling method leads to a large imbalance of negative to positive
training samples. One promising sampling method could be to sam-
ple each query with a set of "known-relevant" seed documents.
These are used in systematic review literature search by informa-
tion specialists to guide the query generation process. Recently,
a seed-driven approach to ranking has been shown to reduce the
workload of the screening task [15]. We also plan to further study
other techniques for semantic query transformation, such as query
reduction [13]. Query reduction techniques for professional search
have been shown to be successful in other contexts, both in the
clinical domain [11, 12, 28], and outside of the medical field [4, 16].

The proposed method for automatic query refinement has the po-
tential to vastly reduce the time spent creating systematic reviews.
The searching and screening processes contribute to a significant
period of time and money in the systematic review creation process.
By reducing the total number of citations to screen by automatically
refining already highly effective queries, the time spent screening
citations and therefore the total cost of a systematic review can be
reduced. These reductions lead to faster and more up-to-date evi-
dence based medicine which in turn lead to more accurate clinical
decisions and better health outcomes.
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