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ABSTRACT
Recent advances in Information Retrieval utilise energy-intensive
hardware to produce state-of-the-art results. In areas of research
highly related to Information Retrieval, such as Natural Language
Processing and Machine Learning, there have been efforts to quan-
tify and reduce the power and emissions produced by methods that
depend on such hardware. Research that is conscious of the environ-
mental impacts of its experimentation and takes steps to mitigate
some of these impacts is considered ‘Green’. Given the continu-
ous demand for more data and power-hungry techniques, Green
research is likely to become more important within the broader
research community. Therefore, within the Information Retrieval
community, the consequences of non-Green (in other words, Red)
research should at least be considered and acknowledged. As such,
the aims of this perspective paper are fourfold: (1) to review the
Green literature not only for Information Retrieval but also for
related domains in order to identify transferable Green techniques;
(2) to provide measures for quantifying the power usage and emis-
sions of Information Retrieval research; (3) to report the power
usage and emission impacts for various current IR methods; and
(4) to provide a framework to guide Green Information Retrieval
research, taking inspiration from ‘reduce, reuse, recycle’ waste man-
agement campaigns, including salient examples from the literature
that implement these concepts.

CCS CONCEPTS
• Information systems → Retrieval efficiency; • Hardware →

Impact on the environment.
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1 INTRODUCTION
Recently, impressive progress has been made with Information
Retrieval (IR) methods based on neural networks and large language
models [24, 88, 94]. However, despite the achievements of these
models, one downside is the high energy costs required to train
and use them in production. Indeed, these methods often require
financial and environmental costs, primarily due to the dependence
on specialised hardware such as GPUs. In related fields such as
Natural Language Processing (NLP), Machine Learning (ML), and
the broad field of Artificial Intelligence (AI), discussions regarding
the energy impact, and more importantly, emissions, of methods
is increasing. One such study from Strubell et al. [77] notes that
training a typical NLP pipeline produces more emissions than an
average human produces each year in the U.S.A. and that training a
large neural transformer model produces approximately five times
more emissions than the average lifetime of a car including fuel.
There have also been concerns about the emissions produced by
computer systems more broadly [2, 4].

Firstly, consider that these numbers are for training a single
model: often, experiments require several rounds of training be-
cause of bugs, hyperparameter tuning, or any number of other
reasons. And then consider the number of papers submitted to con-
ferences such as SIGIR (in the order of thousands). Finally, consider
that most researchers will submit to multiple venues each year.
This perspective paper aims to convince the IR community that the
emissions produced through IR research and subsequent deploy-
ment through production can be considerable. We do this in four
ways: (1) by reviewing the areas of research that have been explored
in the past to address similar problems such as power efficiency,
(2) by providing considerations for how the IR community can
make their research ‘Greener’ through a practical framework, (3)
by providing a measure that can be used to quantify the emissions
for IR research and production IR systems, and (4) by performing
experiments that demonstrate the potential emissions generated by
typical IR research pipelines (i.e., cost of a result) and production
systems (i.e., cost of search at different scales). With all of these
aspects, our goal is to push the community to emphasise consider-
ing the environmental impacts of their research. We acknowledge
that research into the energy efficiency in the field of IR is not
new: environmentally sustainable IR has been of concern for at
least a decade [13]. Although historically, the focus has been on
utilising energy-efficient hardware or specialised scenarios such
as distributed search. Instead, this perspective paper focuses on
the current generation of data and power-hungry IR techniques
and their reliance on costly specialised hardware. We believe that
discussing the environmental cost of doing research with these
techniques is becoming increasingly important. Moreover, as the
authors of this paper, we sought to quantify the impact of our
experiments and found no straightforward way to do so.

https://doi.org/10.1145/3477495.3531766
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In order for us to quantify the emissions of IR research, we can
take two approaches: Life Cycle Assessment (LCA) [23] and power
consumption measurement [77]. According to the ISO standard
definition, LCA is the “compilation and evaluation of the inputs,
outputs and the potential environmental impacts of a product system
throughout its life cycle” [1]. Given the complexity and resource
intensiveness of the LCA approach [13], most studies in related
domains measure emissions using the second approach. In this per-
spective paper, we also take the second approach. Given that there is
a reasonable amount of terminology associated with this approach,
before continuing with the rest of the paper, we first introduce
some common terminology that IR researchers and practitioners
may not be familiar with.

2 TERMINOLOGY
Information Retrieval researchers and Computer Science practition-
ers, in general, may not be familiar with the nomenclatures used to
discuss the themes of this paper. The key terms and the technical
terminologies used to discuss them are listed below.
Energy and Power Lottick et al. [47] provide a succinct explana-
tion of energy and power. They define energy as “an amount
of work done, or to, an object.” Energy is measured in joules; the
exact definition of how a joule is measured is not important to
this paper. On the other hand, Lottick et al. [47] define power as
“the energy per unit time”. Power is measured in watts: one watt
equals one joule per second. It is more convenient to use larger
measurements such as kilowatts (kW, 1,000 watts) at larger scales.
However, kW measures only the rate at which energy is used,
not the total energy used. For this, a common unit of measure is
the kilowatt-hour (kWh), which Lottick et al. [47] also provides
a succinct definition as ‘the energy consumed at a rate of one
kilowatt for one hour’.

Emissions This is the unit by which we quantify a given IR ex-
periment’s impact on the environment. While CO2 is the most
common greenhouse gas, many other gasses or factors are often
involved. For this reason, it is typical to measure the emissions
produced by experiments as kgCO2e, in other words, the amount
(in kilograms) of CO2 equivalent emissions. We provide a method
for calculating this measure in Section 4.

Green IR This is a specific use of the word ‘Green’, which relates
to the phrase ‘Green AI’ proposed by Schwartz et al. [72]. In their
article, they refer to ‘Green AI’ as ‘AI research that yields novel
results while taking into account the computational cost, encour-
aging a reduction in resources spent.’ Naturally, this is in contrast
with ‘Red AI’, which Schwartz et al. refer to as ‘AI research that
seeks to improve accuracy (or related measures) through the use
of massive computational power while disregarding the cost —
essentially “buying” stronger results’. We believe that these con-
cepts map meaningfully to IR in general, so we adapt the phrases
of Schwartz et al. to apply to this community. Indeed, the con-
cept of Green IR was initially introduced by Chowdhury [13] to
refer specifically to the emissions produced by IR experiments
and climate change in general. Our usage of Green IR extends
this idea to a broader context that also encapsulates Red IR. One
other facet to highlight when considering Green IR versus Red IR,
which Schwartz et al. raise in their article, is that Red experiments
are valuable in pushing the boundaries of a field, can promote

future work in efficiency, and the costs may be amortised over
time for methods that do not require retraining. This is to say that
Red IR experiments should not be abandoned but that Green IR
should be considered, at the very least.

3 LITERATURE REVIEW
At the time of writing, there has been a surge of research articles
that aim to assess the emission intensity of computer science ex-
perimentation and research. We focus our efforts first on studies
within fields related to IR, such as NLP and ML in general. This first
focus is because there is a significant overlap between the methods
used in IR and these related domains, especially with the uptake of
deep neural network and transformer approaches that are currently
popular research areas. We then turn our attention to efforts in IR
that have sought to develop methods to reduce emissions or pro-
pose considerations for practitioners to consider when designing
and executing experiments.

3.1 NLP and Machine Learning
3.1.1 Methods for Quantifying Emissions. One of the most promi-
nent papers that aims to quantify the environmental impact of
research is from Strubell et al. [77], who propose a framework for
calculating the emissions of deep learning experiments in NLP. One
critical limitation of that paper is that the authors only consider
the energy usage for training a model. Training models account
for only a relatively small amount of carbon emissions; Amazon
estimates that 90% of the ML infrastructure costs are related to
model inference [37]. In this paper, we build upon their framework
to include the quantification of emissions for aspects of typical IR
experimental pipelines, including the cost of indexing and querying.

3.1.2 Methods for Reducing Emissions. In addition to methods that
seek to quantify the number of emissions produced by NLP and ML
methods, several studies have recently sought to propose methods
for reducing the number of emissions produced by experimentation
and research. One of the most comprehensive papers on this topic
is a survey on green deep learning by Xu et al. [89]. They define
‘green deep learning’ as using more energy-efficient architectures,
training methods, inference methods, and data usage techniques.
They identify too many methods to include as citations here; how-
ever, some papers to note that are highly relevant to IR include:
(1) Naidu et al. [57], who quantify the emissions of differentially
private Machine Learning algorithms and show that more robust
privacy regimes lead to more emissions produced. This paper is
highly relevant to federated learning, a new area of research in IR.
Indeed, recent findings of federated learning have demonstrated
that it produces fewer emissions than traditional GPU-based ML
pipelines [68]; (2) Yusuf et al. [92], who quantify the emissions of
machine translation and show that some pairs of languages produce
more emissions to train than others. This paper is highly relevant
to cross-lingual IR, which is an essential and highly-studied area
of research; and (3) Wiesner et al. [85], who propose a method
for reducing carbon emissions of Machine Learning experiments
by scheduling the training of models during non-peak hours, and
found that shifting workloads to the next day can reduce emissions
by 5% regardless of the region. This paper is also relevant to IR as
the uptake of deep learning models increases.
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Name CPU DRAM GPU Network Repository

CodeCarbon [71] ✓ ✓ ✓ ✗ https://github.com/mlco2/codecarbon
pyJoules ✓ ✓ ✓ ✗ https://github.com/powerapi-ng/pyJoules
energyusage [47] ✓ ✓ ✓ ✗ https://github.com/responsibleproblemsolving/energy-usage
Carbontracker [3] ✓ ✗ ✓ ✗ https://github.com/lfwa/carbontracker
Experiment Impact Tracker [33] ✓ ✗ ✓ ✗ https://github.com/Breakend/experiment-impact-tracker
Cumulator [81] ✓ ✓ ✓ ✓ https://github.com/epfl-iglobalhealth/cumulator

Table 1: Off-the-shelf software libraries that can be used to record some or all of the variables necessary for calculating the
kgCO2e/kWhof InformationRetrieval experiments. The✓and ✗symbols indicatewhether these libraries are capable of record-
ing the associated measurement.

3.1.3 Tools for Measuring Emissions. There have also been several
tools that seek to estimate the emissions produced by ML experi-
ments. Some of these tools are highlighted later in Table 1. These
tools [3, 33, 47, 71, 81] directly measure power draw in Watts using
recently implemented hardware APIs in certain CPUs and GPUs,
and in some cases, provide estimates of network power usage too.
Another set of tools that can make less accurate estimates of emis-
sions produced by ML experiments simply do so based on the kind
of hardware used and how long experiments were run for [41].

3.2 Information Retrieval
3.2.1 Green IR in the Literature. The concept of Green IR is in-
deed not new. Several papers have been published that discuss the
environmental considerations of IR methods. For example, to the
best of our knowledge, the first to propose an agenda for Green IR
was Chowdhury [14, 15] who focus their efforts on measuring and
reducing emissions within a digital libraries context.

3.2.2 Energy and Power Usage. In addition, there have also been
several papers that put forward methods to reduce the energy
and power of IR experiments. One prominent name in this space is
Catena, who proposes methods to measure the energy consumption
of querying search engines [8, 11], to consider power management
of searching web search engines [10], methods for energy-efficient
query processing in web search engines [12], managing the energy
usage of distributed web search [9], and measuring the costs of
multi-center web search engines [6]. The focus of these studies are
on more traditional IR experimental pipelines and do not consider
current methods that exploit GPUs. However, such methods can
still be used today, especially for early stages in retrieval pipelines,
prior to more expensive operations like top-k re-ranking.

3.2.3 Efficiency. There is a long and rich history of efficiency in IR
research [17, 82, 86]. Algorithms that are space- and time-efficient
naturally fit into the Green IR category. However, in addition to
the space and time measurements typically recorded (as well as
the effectiveness trade-offs, if any), the measurements of power
usage offer another interesting dimension of analysis that can be
further used to contrast with other efficiency measures. Indeed,
while some energy-efficiency focused studies have already been
conducted [10, 25]. and such analysis of effectiveness trade-offs
provides a clear direction for future work.

3.2.4 Neural IR and Power Usage. One highly successful recent
trend in Information Retrieval is the use of transformer language
models [83] such as BERT [22] that make heavy use of GPUs for

both training and inference [21, 24, 35, 44, 49, 52, 69, 88, 94, 95].
To date, there have been no IR-focused studies to investigate the
power usage of such models. Although some studies have focused
on improving the efficiency of the models (i.e., reducing the in-
ference time for ranking), this is not the same as power usage.
An efficient neural model may still use more power than an effi-
cient CPU-based method even if they run in the same amount of
time. However, there is a hidden cost associated with measuring
efficiency through running time, or latency, which is that often
GPU-based experimentation is highly parallelised. In these cases,
latency only captures the longest path through a parallelised job,
not the cumulative amount of work expended, which is what we
aim to address. In this paper, we study the power usage of these
new models and compare them to more traditional IR pipelines.
The distinction between efficiency and power usage is important,
and we believe a key but underexplored area of research in current
neural IR trends.

4 QUANTIFYING GREEN IR
We believe that it is important to quantify the power usage and emis-
sions impact of IR research, especially given the power utilisation
of recent advancements in GPU-powered IR research. As of writing,
there are already several practical methods and frameworks for
quantifying the environmental impact of machine learning models.
As the following measures provide an accurate estimation for the
power and emissions produced by experimentation, they are ideal
for quantifying the impact of emissions. The following measures
are used within this paper to compare several typical IR pipelines.

Strubell et al. [77] suggests two formulas (which have been
slightly adjusted to replace constants with variables) for calculating
the power consumption of training deep neural network models
for NLP. They estimate kgCO2e/kWh by first measuring the power
consumption of different computing components:

pt =
Ω · t · (pc + pr + pд)

1000
(1)

Where Ω is a coefficient representing the power usage effective-
ness (PUE) for where an experiment is run;1 t is the total running
time in hours; pc is the average power draw from all CPUs utilised;
pr is the average power draw of the memory utilised (i.e., DRAM);
and pд is the average power draw across all GPUs utilised. Note
that all the px variables are measured in watts, meaning that p is

1Strubell et al. use the global average for data centres. However it should be ideally
the PUE of the data centre or locality where experiments are run

https://github.com/mlco2/codecarbon
https://github.com/powerapi-ng/pyJoules
https://github.com/responsibleproblemsolving/energy-usage
https://github.com/lfwa/carbontracker
https://github.com/Breakend/experiment-impact-tracker
https://github.com/epfl-iglobalhealth/cumulator
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a measure of kilowatt-hours (kWh). Lannelongue [42] proposes a
similar equation to measure power draw, which provides a more
accurate estimate; however, we believe that the estimate by Strubell
et al. is sufficient and easier to calculate given the existing software
libraries that facilitate recording power draw (as there are several
limitations with existing libraries as we will show in Section 4.0.1).
With this measurement, Strubell et al. then compute the emissions
of an experiment as:

kgCO2e = θ · pt (2)
Where θ is the average amount of CO2 (in kilograms) produced

per kilowatt-hour in the region where the experiment took place,
this is typically measured as an amount of CO2 equivalents per
unit of power consumed, for example, kgCO2e/kWh. Again, this
should ideally be the value for the data centre or locality in which
experiments are run, but a global estimate can also be used. Note
that it is essential that both Ω, θ , and all other variables used for
computing kgCO2e are reported so that others interested in repli-
cating, reproducing, or comparing results can do so. This estimation
of carbon emissions can easily be translated to IR experiments (it
is not domain-specific), is relatively easy to calculate, and can be
used to compare the number of emissions produced by different
models, so long as the constants and units are the same.

This measure can also be extended to calculate the CO2 emissions
of a retrieval system in production. Rather than retrospectively mea-
suring how many CO2 emissions were generated from the training
procedure for a given IR model, it can be used to estimate the emis-
sions over the lifetime it may be used in production. In addition to
estimating the CO2 emissions produced training a retrieval model,
it is also possible to estimate the CO2 emissions produced for a
single query: pq . Using the number of queries issued to a search
engine over a period of time (e.g., one hour), one can estimate the
impact of their retrieval model in production:

kgCO2e = θ · ∆q · pq (3)
Where ∆q is the average number of queries issued to a search
engine in one hour.

4.0.1 Measuring Power Draw. Now that we have established how
to quantify the carbon emissions for Information Retrieval experi-
ments, we provide suggestions for software libraries that one can
use to record the power usage values for computing kgCO2e/kWh.
Historically, measuring the energy consumption of hardware and
software has been necessary for organisations to manage their
energy utilisation. That being said, only recently have libraries
been developed to measure the energy impact of scientific experi-
ments. However, even these libraries are limited to the operating
system and hardware architectures that are supported. Noureddine
et al. [65] provide a survey of energy measurement approaches.
They identify three classes of energy measurement approaches:
hardware measurements, software measurements, and power mod-
els (i.e., estimating the energy usage from hardware and software
measurements). They suggested that software measurements (e.g.,
profilers) were the most promising approach due to the limitations
of hardware and power models at the time. However, more re-
cently, energy measurement approaches have evolved to include
much more fine-grained measurements of hardware utilisation. For

convenience, in Table 1 we have listed several recently published
software libraries that can be used to record the necessary variables
for computing kgCO2e/kWh. Note that most libraries, including
the ones mentioned in Table 1 can only record measurements for
Intel CPUs and nVidia GPUs.

4.1 Alternative Measures
In contrast with direct measurements of power usage and emissions,
there have also been several alternative measurements that seek to
quantify or index howGreen research is. Henderson et al. [33] argue
that there are also limitations to reporting emissions: emission
production can differ depending on the region, time of day, and
even across years. Reporting the power consumption allows one to
estimate the amount of emissions given the carbon intensity of a
specific region or time. Economic measures [18, 43] may also help
with understanding costs, but we expect them to correlate with our
measures, thus we do not perform this analysis here.

Floating Point Operations (FPO) There are several state-of-the-
art methods in the Machine Learning and Natural Language
Processing literature that measure computational cost through
floating-point operations, or FPO [31, 55, 83, 84]. One advantage
of this measure is that the FPO value for any given method will be
the same independent of hardware. However, one disadvantage
of FPO is that there is no single agreed-upon way to calculate it.
Therefore, although each of the papers cited above mentions that
they measure the cost of their method through FPOs, the individ-
ual methods are not comparable. Compared to measuring power
usage, although there can be fluctuations in hardware utilisation,
if one uses the same hardware for two different experiments,
one can obtain somewhat comparable results (i.e., depending on
random factors like time of day, region, and other fluctuations).

Red AI Cost Schwartz et al. [72] propose an equation for estimat-
ing the total cost of producing a single result (R):Cost(R) ∝ E ·D ·H
where E is the cost of executing the model on a single sample, D
is the size of the training dataset; i.e., the number of times the
model was executed in training, and H is the number of hyper-
parameter experiments; i.e., the number of times a model was
trained throughout the development of the model. However, like
FPO described above, the authors of this measure do not specify
precisely the cost of executing a model, i.e., it is left as an exercise
to the researcher wanting to use the model. Therefore, the same
advantages and disadvantages listed for FPO above exist for this
measure. Another disadvantage of this measure is that it primarily
captures the training cost of models. For research purposes, this
may be satisfactory for reporting in a publication but is lacking
for reporting the cost of methods in reality, for example, the cost
of retrieval in a search engine over a period of time.

However, the downside to these measures listed above is that
they do not translate easily into ameaningful value. Comparing how
many emissions are produced by travelling or running household
appliances to the emissions produced through research is a much
more natural way to understand the impact of the emissions. This
is opposed to an index that simply represents the computational
cost of research. Here, there is no analogue so as to easily be able
to understand the impact of the cost.
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5 ENVIRONMENTAL COST OF IR RESEARCH
Using the equations for estimating the emissions produced by IR
research, we demonstrate the possible levels of emissions produced
by different typical IR research pipelines. We use off-the-shelf li-
braries and tools publicly available and commonly used by the IR
community for all of the experiments. The experiments we conduct
all investigate the ‘cost’ involved in some factors of IR research. By
‘cost’, we explicitly refer to the environmental cost of an experiment,
measured as kgCO2e/kWh as defined in Section 4.

Our experiments investigates two main factors: (1) ‘traditional’
IR research (e.g., inverted index or statistical scoring functions)
versus ‘neural’ IR research (e.g., dense retrievers and neural IR),
and (2) offline costs (e.g., indexing documents, training models
and fine tuning, hyperparameter tuning) versus online costs (e.g.,
performing retrieval, scoring documents).

5.1 Experimental Setup
5.1.1 Test Collection. The collection we use to perform these ex-
periments is MS MARCO v1 [61]. Although we acknowledge that
using a single collection does not provide a very generalisable re-
sult, there are very few collections available with enough topics
to support training neural Information Retrieval models, which
are the main interest of this paper. MS MARCO is also a highly
used collection in the IR community at the moment, and therefore
results on this collection will be meaningful to many. One aspect
of IR research that we are not considering in our results is the cost
associated with network transfers. Distributing large collections
such as MS MARCO have an environmental cost associated with
them, from storing the collection to facilitating the network transfer
of the collection. Unfortunately, we were unable to identify any
estimates that quantify this cost. As a result, we cannot make any
concrete claims about how these costs may impact the total emis-
sions produced by an experiment. However, we believe that going
forward, this cost should be measured and considered by those that
use large collections, especially as these collections grow in size
and scope into the future: The passage collection of MS MARCO
v2 is 15.6 times larger than the original, weighing in at 32.3GB
compressed. In our experiments, we use the smaller v1 collection.

5.1.2 Implementation Details. In terms of methods, to reduce the
number of comparisons, we investigate a single ‘traditional’ method:
BM25 [70]. Despite using only a single method to represent all ‘tra-
ditional’ IR, BM25 is perhaps the most commonly used retrieval
method in IR research, and is often used as an initial ranking
for more complex re-rankings [19]. We contrast BM25 (using py-
serini [45]) against several IR baselines: dense retrievers (using
DPR [39]), sparse retrievers (using uniCOIL [44]), neural re-ranking
(TILDEv2 [94] and monoBERT [64]), re-ranking with learning to
rank (using LambdaMART [7]), and neural document expansion
models (using TILDE [95] and docT5query [63]).

BM25 We use the standard pyserini [45] indexing and retrieval
scripts, with b and k1 parameters chosen based on prior tuning
experiments performed on the MS MARCO collection.

LambdaMART We cannot evaluate this collection usingMSMARCO
as no learning to rank features exists. Thus, we train a Lamb-
daMART model using the Yahoo! C14B collection, which contains

a similar number of training examples as MS MARCO. For eval-
uation, we create a synthetic collection by oversampling from
the C14B test portion to match the number of examples in the
dev portion of MS MARCO. We use the implementation from
LightGBM [40]. Note that in our calculations we are unable to
factor in the cost of feature extraction, which we believe would
be considerably expensive, depending on the type and number of
features.

DPR We mainly follow the training configuration in the original
paper [39] with slightly different parameter setting to train the
DPR model. Specifically, we use the bert-base-uncased check-
point offered by Huggingface transformers [87] to build a bi-
encoder DPR model and use BM25 hard negative sampling strat-
egy to train the model. We randomly sampled seven hard negative
passages from the top 200 passages retrieved by BM25 and one
positive passage from the relevance assessments. We set the batch
size to 16 and applied in-batch negatives sampling to each training
sample in the batch, resulting in 7 + 8 ∗ 15 = 127 negatives per
training sample. We train with the AdamW optimiser and a 5e-6
learning rate and a linear learning rate schedule for 150K updates.
For inference, we use the FAISS library [38] to index and retrieve
dense vectors.

monoBERT We follow the training practice described byNogueira
and Cho [62]. We fine-tune a bert-large-uncased checkpoint
from Huggingface transformers with binary cross-entropy loss to
perform binary classification on query-passage pairs. Negative
pairs are randomly sampled from the top 1,000 passages retrieved
by BM25. We set the ratio of positive pairs to negative pairs to
1:4. The model is trained on two Tesla V100 GPUs with a batch
size of 2 ∗ 64 for 70K updates. We use monoBERT to re-rank the
top 1,000 passages retrieved by BM25.

TILDEv2 We directly use the training and inference scripts with
the same configurations available on the official Github reposi-
tory 2. We use TILDEv2 to re-rank the top 1,000 passages from
BM25.

uniCOIL We directly use the official training scripts 3 to train the
model and use pyserini 4 to index and inference.

Passage expansion For TILDE expansion [95], we directly use
the code provided in the official repository 5. For docTquery ex-
pansion, we use the Huggingface transformers implementation
that is available in the official repository 6. Since using docTquery
to expand the whole MSMARCO passage collection is very expen-
sive [63, 94], we randomly sampled a subset of the MS MARCO
collection with 2,560 passages and only use docTquery and TILDE
to expand this subset to estimate the overall running time.

5.1.3 Power and Emission Measurement. We use the HPC cluster
available to us at our institution for running each of the experi-
ments. We contacted the manager for the computing infrastructure
to obtain the PUE (Ω), which was 1.89. We could not obtain the
average emissions produced per hour from this contact, so we used

2https://github.com/ielab/TILDE/tree/main/TILDEv2
3https://github.com/luyug/COIL/tree/main/uniCOIL
4https://github.com/castorini/pyserini/blob/master/docs/experiments-unicoil.md
5https://github.com/ielab/TILDE#passage-expansion-with-tilde
6https://github.com/castorini/docTTTTTquery#predicting-queries-from-passages-
t5-inference-with-pytorch
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the kgCO2e/kWh (θ ) for our region, 765.9.7 We record the power
usage (in watts) and the running time (in seconds) through the
CodeCarbon [71] library and convert the values to their appropri-
ate units before computing Equations 1, 2, and 3 (See Appendix A).
Note that in parts of the world with higher adoptions of renewable
technologies, the kgCO2e/kWh may be lower than what we report.
In any such case, we believe it is still important to report power
and emissions as it promotes energy-efficient methods and running
experiments on Green infrastructure.

To promote uptake and discourse of Green IR methods, we re-
lease all of the code and data used in these calculations for others
to reproduce and reuse: https://github.com/ielab/green-ir.

5.2 Results
5.2.1 Impact of Experiments on Emissions. We begin our analysis
by first investigating the emissions cost for obtaining a single result.
For simplicity, we refer to the concept of an entire Information
Retrieval pipeline, from training or tuning; to indexing; to retrieval
or re-ranking in order to measure the effectiveness of a method,
as an experiment. These experiments on the methods described in
Section 5.1 are presented in Table 2.

Examining ‘traditional’ pipelines like BM25 and learning to rank,
the emissions produced by these methods is several orders of mag-
nitude lower than more recent neural methods. This result suggests
that one can perform hundreds of experiments using these methods
before reaching the number of emissions produced by ‘modern’
methods. The LTR is so close to BM25 in the number of emissions
produced because it is using a linear ranker.

A neural ranker is likely to produce more emissions. In contrast,
monoBERT produces ten times more emissions to obtain a single
result than other methods when comparing the neural methods.
Conversely, DPR produces the least amount of emissions. As dis-
cussed below, the amount of emissions produced may be an indirect
indication of effectiveness.

Next, we further investigate the emissions produced by each neu-
ral method for an experiment. Comparing uniCOIL and TILDEv2,
two document expansion models, we found that although the re-
trieval stage of TILDEv2 is more efficient than uniCOIL, the overall
cost of an experiment is higher. Furthermore, these two methods
have an expansion stage where we chose to use TILDE and docT-
query. The running time of docTquery is almost 70 times that of
TILDE, producing over 100 times more emissions. Across all neu-
ral methods, excluding the document expansion step, the training
step was the most expensive. It produced the most emissions, with
monoBERT producing approximately ten times as much during the
training process as other neural methods. This is likely because
monoBERT is using the bert-large model and because it cannot
pre-compute document representations, instead needing to estimate
relevance at query time. On the other hand, TILDEv2 pre-computes
everything at the indexing time, costing less at retrieval time.

To get an understanding of howmany emissions are produced by
these methods compared to more familiar reference points, Table 3
contains the emissions produced by common household appliances,
air travel, and car travel. Obtaining a single result for a given ex-
periment is comparable to the emissions produced through the

7https://archive.is/quN83, using the values reported for Queensland in January 2022.

Experiment Running
Time
(hours)

Power
(kWh)

Emissions
(kgCO2e)

BM25 Indexing 0.0809 0.0021 0.0016
BM25 Search 0.0025 0.00006 0.00005

0.0834 0.0022 0.0017

LambdaMART Training 0.0285 0.0008 0.0006
LambdaMART Rerank + BM25 0.0628 0.0017 0.0013

0.0914 0.0024 0.0019

DPR Training 16.46 6.74 5.16
DPR Indexing 2.42 1.04 0.7958
DPR Search 0.4141 0.0002 0.0001

19.3 7.78 5.96

monoBERT Training 57.43 57.95 44.38
monoBERT Rerank + BM25 23.18 10.8 8.27

80.61 68.75 52.65

TILDEv2 Training 15.73 6.91 5.29
TILDEv2 Indexing 9.44 4.74 3.63
TILDEv2 Rerank + BM25 0.0247 0.0003 0.0003
TILDE Expansion 11.89 1.04 0.7958

37.08 12.69 9.72

docTquery Expansion 760.48 169.06 129.49

785.68 180.71 138.41

uniCOIL Training 17.97 7.24 5.54
uniCOIL Indexing 3.66 1.95 1.49
uniCOIL Search 0.8966 0.0237 0.0182
TILDE Expansion 11.89 1.04 0.7958

34.41 10.25 7.85

docTquery Expansion 760.48 169.06 129.49

783.01 178.28 136.54

Table 2: Cost of IR research over the lifetime of a possible ex-
periment. Each stage in the pipeline (i.e., model training, in-
dexing, and searching) is measured separately. The cumula-
tive cost measurements (i.e., running time, power consump-
tion, and emissions) are also shown at the bottom of each
set of stages in each pipeline in bold. Both TILDEv2 and uni-
COIL have two totals depending on the choice of document
expansion method. A more comprehensive breakdown of
search cost is visualised in Figure 1.

usage of common household appliances. A single researcher may
produce the same emissions as taking a short commercial airline
flight throughout model development. A research lab will naturally
produce more emissions (although more difficult to estimate).8

8Sourcing data for Table 3 was challenging due to limited availability. Appliance
data was sourced from ENERGY STAR (https://www.energystar.gov/productfinder/
advanced). Specific URLs are listed in our repository. Flight data was sourced from
https://www.atmosfair.de/en/offset/flight/. Car datawas sourced from https://www.epa.
gov/automotive-trends/explore-automotive-trends-data. Accessed in January 2022.

https://github.com/ielab/green-ir
https://archive.is/quN83
https://www.energystar.gov/productfinder/advanced
https://www.energystar.gov/productfinder/advanced
https://www.atmosfair.de/en/offset/flight/
https://www.epa.gov/automotive-trends/explore-automotive-trends-data
https://www.epa.gov/automotive-trends/explore-automotive-trends-data
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Appliance Running Time
(hours)

Power (kWh) Emissions
(kgCO2e)

Television 5.0000 0.3664 0.2806
Clothes Dryer 1.0847 2.2491 1.7226
Refrigerator 168.0000 7.3544 5.6327

Flight from Frankfurt to Madrid 728
Flight from New York to Madrid 2,293
Flight from Shanghai to Madrid 4,911
Flight from Melbourne to Madrid 11,682

Driving 10,00km by car 5,617

Table 3: Power consumption of common household appli-
ances, for flights between several locations andwhere SIGIR
is hosted this year, and driving 10,000km by car. Note that
the power consumption is for a typical consumer household
and not a data centre. Therefore, the PUE in Equation 1 is
set to 1.0. Note also that the flight emissions are for a sin-
gle passenger. Our code repository contains data sources and
scripts used to process it into this format.

1,0
00

10
,00

0

10
0,0

00

1,0
00

,00
0

10
,00

0,0
00

Number of Queries (per hour)

0.0001

0.01

1

100

10000

E
m

is
si

on
s 

(k
gC

0 2
e)

log10

BM25 Search
LambdaMART Rerank + BM25
DPR Search (*)

monoBERT Rerank + BM25
TILDEv2 Rerank + BM25
uniCOIL Search

Figure 1: kgCO2e produced per hour for different estimates
of queries issued to a hypothetical search engine per hour.
Note that the values obtained are estimated from the run-
ning time and energy consumption reported in Table 2. Note
that DPR has been estimated from running 200 queries in-
stead of the entire 6980 dev set of MS MARCO (query-by-
query instead of batch retrieval). Values are highly approxi-
mate and do not account for additional factors such as load
balancing, caching, or batching.

5.2.2 Cost of Experiment versus Cost in Production. Research and
experiments are often only one side of the coin in IR. The flip side
of research is the deployment of IR systems. Using Equation 3, we
plot the estimated emissions produced for each of the methods
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Figure 2: Effectiveness-emissions trade-off for obtaining a
single experimental result (i.e., summed rows in Table 2).
Note that the learning to rankmethod is not included in this
figure because features were unavailable for MS MARCO
documents.

in Table 2, presented in Figure 1. This figure only visualises the
search stage and not the entire pipeline. Furthermore, it is unlikely
that a single machine will handle tens of millions of queries per
hour alone; instead, a distributed system involving many servers is
used for load balancing. For some systems such as monoBERT, the
estimates are impossible on a singlemachine, as evidenced in Table 2
where only approximately 300 queries can be processed per hour
(dev size/running time). Therefore the estimates offer a perspective
on a likely lower bound in the emissions produced that do not
consider additional resources that would be used to load-balance a
production system. Additionally, the x-axis in Figure 1 only goes
to 10,000,000 queries per hour. This is a low value compared to
the traffic popular search engines may receive, although finding a
reliable number is difficult, so our estimates are conservative.9

Given our estimates for the number of emissions produced by a
given search system, we found that even at large scales on the order
of millions of queries per hour, most methods produce relatively
low amounts of emissions. With our approximate, lower-bound
estimates, the second worst method in terms of emissions, uniCOIL,
could be run in a production system for an entire year and not
produce the same amount of emissions as a flight from Melbourne
to Madrid; monoBERT, on the other hand, would produce approxi-
mately the same amount in a single hour. Finally, although TILDEv2
produces more emissions to achieve a single experimental result (as
in Table 2), in production, it is the second best behind BM25. This
finding suggests that there can be a trade-off also in producing more
emissions to train a model where it will produce lower emissions in
production over the lifetime of the model. Note that in production
systems, it is likely that query results would be cached to avoid
needing to perform an end-to-end query processing pipeline. We
leave such investigations for future work.

9DuckDuckGo shares official traffic statistics (https://duckduckgo.com/traffic), how-
ever they have a relatively low market share.

https://duckduckgo.com/traffic
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5.2.3 Effectiveness-Emissions Trade-off. As alluded to earlier, we
observe a trade-off in the number of emissions produced for an
experiment and the effectiveness that the experiment obtains. Fig-
ure 2 highlights the trend that we observe for each of the methods
listed in Table 2 (excluding the learning to rank experiment given
the explanation in Section 5.1.2). This figure suggests that in order
to achieve more effective results, more power must be used, and
thus more emissions may be produced. This is particularly evident
when comparing the expansion methods of TILDEv2 and uniCOIL.
The docTquery expansion method results in a higher MRR@10 with
a considerable trade-off in emissions.

Notably, the amount of emissions produced appears to plateau
as effectiveness increases (as indicated by the blue trend line). This
trend suggests that large improvements in effectiveness can be
achieved when using neural methods compared to traditional meth-
ods such as BM25. However, minor improvements in effectiveness
between such models come at the expense of relatively high power
usage and thus emission production.

6 DISCUSSION AND LIMITATIONS
Our experiments have demonstrated that compared to other re-
search domains, IR produces relatively low emissions. Even the
most demanding methods we considered such as document expan-
sion using docTquery do not produce levels of emissions similar to
the air travel for a single passenger. However, one thing to note is
that there is a cost associated with the training of the underlying
neural models. Results reported by Strubell et al. [77] demonstrate
that (pre-)training large language models can be a very costly ex-
ercise. Currently, some of the most effective methods on the MS
MARCO leaderboard in fact do some amount of pre-training for the
underlying language model, e.g., coCondenser [28]. When taking
into account extensive model pre-training, we expect to obtain
levels of emissions similar to those reported by Strubell et al..

We also note a number of limitations of our study. To begin, we
only included a single ‘traditional’ model (BM25), when we could
have also included several, such as QLM [67] or SDM [54]. We
believe that BM25 is representative of many of these traditional
methods both in terms of effectiveness and emissions. Furthermore,
BM25 is also almost exclusively used as an initial ranking for many
methods using the MS MARCO collection.

Another set of models that we did not investigate include word
embedding-based methods, such as GLM [26] or NTLM [96]. There
are also older neural models that exploit convolutional neural net-
works (CNN) or recurrent neural networks (RNN) [32, 36, 60, 73–
76, 90, 91]. We did not use these models because they are smaller
than current models (in terms of the number of parameters), and
our focus for this perspective paper is on current trends in IR. Com-
pared to current methods, these older neural models are both faster
to train and score documents, yet produce results closer to BM25
than to current methods [34] like DPR, TILDEv2, or uniCOIL.

Other limitations include: (1) our focus on passage retrieval, not
document retrieval, where neural methods may be more compu-
tationally expensive depending on how passage aggregation or
document representation is handled, and; (2) our focus on the ad
hoc search task, which may be less computationally expensive
than other tasks, e.g., in the diversity task, many methods involve
comparisons between documents that have already been ranked.

7 CONSIDERATIONS FOR GREEN IR
Although we have suggested that the holistic LCA approach to
measuring the emissions produced by IR experiments is infeasible,
we believe that one should still consider the emissions produced
through the life cycle of an IR experiment. Furthermore, while
we also believe that the power usage of the experiments we have
demonstrated constitute the primary sources of emissions from IR
research, there may still be non-negligible costs that can be attrib-
uted to other factors such as data storage. Rather than attempting
to measure all of these various factors, we instead provide a frame-
work for IR practitioners to remain mindful of the potential costs.
Our framework is inspired by ‘reduce, reuse, recycle’ campaigns
often used for waste management and environmental sustainability.
We could not find any reference to this framework being applied to
similar domains. However, we believe these three concepts can en-
capsulate many aspects of Green IR systems. We frame these three
concepts (reduce, reuse, and recycle) as a way of pursuing Green
IR research. Within each of the subsections below, we also include
salient examples from the literature that demonstrate approaches to
tackle the challenge each concept represents and possible directions
for future work that go deeper into the respective concept. The
methods and examples presented in this section are not explicitly
Green methods, which have already been listed in Section 3.2. To
this end, the examples in this section are intended to be representa-
tive of the reduce, reuse, and recycle concepts. We have selected
these examples to be the most intuitive from a larger pool. There-
fore the reader is urged to use them merely as a starting point for
reflecting on their own techniques or methods.

First, however, we provide some analogies to give an intuitive
sense of what exactly is meant when referring to reduce, reuse,
and recycle concepts. Rather than illustrate these concepts with
computer science terminology, we paint a picture using a jam jar.
Imagine looking at the shelves in the local jam shop. Of course,
there are many flavours of jam to choose from and many sizes of
jars. Being both an avid jam lover and mindful of the resources used
to create and dispose of jars, thus wanting to reduce waste, you
choose a larger jar over a smaller jar, so you need to buy new jars
less often. After a month, all of the jam in the jar has been used up,
and it is time to buy more jam. Rather than buying a new jar, you
reuse the large jar you bought last time and fill it with new jam
from the jam shop. One day, you suddenly realise that you have
lost your love of jam. Your new passion in life is candle making,
and you recycle your trusty jam jar, filling it with candle wax.

To use a more concise description of these concepts within the
context of IR research: to reduce is to expend fewer resources,
to reuse is to repurpose resources intended for one task to the
same task, and to recycle is to repurpose resources intended for
one task to a different task. Finally, although our objective with
these concepts is to provide a guiding framework for considering
the impact of emissions on IR research, they also promote a more
supportive research environment. For example, publicising failed
research reduces duplicated work and sharing a pre-trained model
for reuse ensures reproducible and replicable research.
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7.1 Reduce
The first consideration that can be made when designing experi-
ments in a Green way is often the most straightforward: simply
reduce the number of experiments involved. However, as the ex-
amples demonstrate, the concept of reduction can also be thought
of as limiting expensive computations, e.g., utilising the CPU over
GPU. To this end, one can think about this concept not in terms of
experimentation but in terms of available resources. As such, prior
to starting any research or experiments, one may ask themself: How
can I perform research with fewer resources?

7.1.1 Random Hyper-parameter Search. Many experiments involv-
ing hyper-parameters require optimisation to identify the most
effective model. For the majority of experiments that involve hyper-
parameter optimisation, it has been empirically and theoretically
shown that random search is computationally more efficient than
grid search [5]. Furthermore, reducing the search size naturally
reduces the number of resources required for experimentation.

7.1.2 CPU-based Inference. Typical transformer-based deep learn-
ing ranking models require specialised GPU hardware for efficient
query processing. The utilisation of the GPU for this purpose is
considerably more energy-intensive than using the CPU [64]. To
address this problem, several papers have spawned to attempt to
repurpose existing models to permit CPU-based inference for the ef-
fective and efficient ranking of documents. One key example of this
is docT5query [63] which uses a fine-tuned T5 model for expand-
ing documents prior to indexing them for retrieval by traditional
models such as BM25. A more recent example of this approach is
TILDEv2 [94] which combines the offline document expansion step
with a fast CPU-based query likelihood scoring mechanism.

7.2 Reuse
The second consideration that can be made when designing experi-
ments in a Green way is to reuse existing software artefacts such as
data, code, or models. Reusing existing technology and data means
taking something existing and repurposing it for a task not initially
intended. As such, prior to starting any research or experiments,
one may ask themself:How can I repurpose data, code, or other digital
artefacts meant for one task to the same task?

7.2.1 Reuse Large Collections. Rather than recreating entirely new
collections for each task, a common approach to developing new
methods or tasks is to reuse existing collections. One prominent
example of this in the Information Retrieval community is the MS
MARCO collection which was initially intended for developing and
evaluating Natural Language Processing methods such as question
answering, summarisation, and reading comprehension. The TREC
Deep Learning track [19, 20] exploits the underlying collection of
passages for ad-hoc retrieval research but utilises a different set
of queries and deeper relevance assessments. Reusing data in this
way reduces the energy required to build the collection in the first
place (e.g., scraping web pages or data processing). However, it may
also reduce the number of network transfers. The collection was
already popular before introducing the TREC Deep Learning track,
meaning that many research groups likely already had the majority
of the data downloaded.

7.2.2 Pre-indexing Common Collections. As the indexing results
have shown in Section 5.2, this step in the IR pipeline, even for tra-
ditional inverted indexes, can contribute to measurable amounts of
emissions. Reusing indexes reduces emissions produced by indexing
the same collection many times (i.e., by researchers, practitioners,
and students). It promotes reproducibility by fixing this crucial
step in the IR pipeline (although doing so may reduce the diversity
of systems when pooling). Both pyterrier [51] and pyserini [45]
provide several pre-indexed collections available to be simply down-
loaded. Further, pyterrier pipelines can be integrated with pyserini
indexes. Lin et al. [46] have also proposed a common index file
format (CIFF) which promotes interoperability between different
search engine implementations [50, 53, 56]. The CLEF eHealth con-
sumer health search workshops [29, 30, 66, 97] are another example
of sharing pre-indexed collections for participants to the work-
shops. In addition to utilising ClueWeb collections, participants in
these workshops were able to download a pre-indexed version of
the collection, which reduces the amount of time and energy by a
factor of how many participants chose this option.

7.3 Recycle
Finally, the last consideration that can be made when designing
experiments in a Green way is to recycle existing software artefacts
such as data, code, and models. Recycling existing technology and
data is subtly different from reusing such artefacts. We differentiate
reuse from recycle by defining recycle as the action of repurposing
an existing artefact for a task it was not originally intended. The
repurposing of artefacts does not necessitate the modification typi-
cally required when, for example, reusing a model. As such, prior
to starting any research or experimentation, one may ask themself:
How can I repurpose existing data, code, or other digital artefacts
meant for one task to a different task?

7.3.1 Neural Query Expansion. Rather than fine-tuning language
models for a particular Information Retrieval task, there have also
been some methods that have exploited the pre-trained language
model directly. This recycling of a model, therefore, requires no
pre-training step. In the IR domain, there have been at least two
such studies that utilise pre-trained transformer models for query
expansion [16, 58]. The intuition of these methods is to exploit
the textual generation ability of neural language models to add
relevant terms to a query. Although these methods avoid expensive
pre-training and fine-tuning neural language models, they still may
be unsuitable for production settings, requiring specialised GPU
hardware for efficient query processing. There is a clear direction
for future work that exploits these pre-trained models for effective
and power-efficient expansion.
7.3.2 Passage expansion with TILDE. Another example of the recy-
cle concept is the TILDE model for passage expansion. TILDE is a
BERT-based language model that is trained with query likelihood.
It can predict relevant query tokens given a passage. Originally,
TILDE was used to re-rank passages [95], however the authors
found that it can also serve as a passage expansion model just like
docTquery [94] without further fine-tuning. As we demonstrated
in Section 5.2, TILDE can be used for ranking models that rely
on passage expansion and has a similar retrieval effectiveness as
docTquery while producing fewer emissions.
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8 CONCLUSION
To summarise the contributions of this perspective paper, (1) we
have provided a literature review of Green methods in not only
the IR domain but in closely related domains such as NLP and ML,
where we found a lack of research into quantifying the emissions
for IR, (2) we have provided a framework for IR practitioners to
consider when designing experiments and systems by contextual-
ising the ‘reduce, reuse, recycle’ concepts to the IR domain, and
(3) we have undertaken an investigation into the power usage and
emissions produced by several well-known IR ranking pipelines.
We have found that the current trends in IR do not lead to exces-
sive emissions and likely lower emissions than those produced by
research in related domains like NLP. Further, we note that mod-
els requiring more resources achieve increasingly smaller gains in
retrieval effectiveness.

Current Costs and Impact of IR Research. We have focused our
attention on what we believe to be the most resource-intensive
(and thus the most emissive) aspect of IR. However, the ranking
models that have been investigated in this paper are not the only
contributor to emissions. There is still much research to be done in
increasing the efficiency of existing traditional search systems for
massive scalability and in other areas such as distributed search [80].
We also recognise that the field of IR is not limited to ad hoc retrieval
in the context of the web, where the experiments of this paper have
been focused. However, for these related tasks and new ranking
models, our measures for quantifying emissions, which are based
on the work of Strubell et al. [77] and our conceptual framework
for making considerations for Green IR, can be used to assess and
compare their impact.

Implications for Future Directions in IR Research. The continued
uptake of larger and larger neural methods that require specialised
and power-hungry hardware and increasing amounts of data will
drive the demand for the utilisation of more power and more data.
Further to this point, we believe that given the current direction
of IR research, several orders of magnitude more power usage
and data may be required in the future (and thus more emissions).
One clear example of this effect (outside of the results we have
shared in this paper) is the search results from a recent OpenAI
paper [59]. Their largest model with 175 billion parameters fails
to outperform relatively old neural models that have on the order
of 100 million parameters on several collections from the BEIR
evaluation suite [79]. It is also unclear from the paper how long
it takes to train and make predictions with these larger models,
likely requiring specialised hardware for both. From this method,
we posit that the current trend of increasing the size of models to
achieve higher effectiveness may not apply to IR research as it does
in the NLP and ML domains.

We believe that a natural future direction in IR research is to
go beyond the current trend of fine-tuning large pre-trained lan-
guage models initially designed for NLP tasks. Techniques such as
Condenser [27] and PROP [48] highlight that pre-trained language
models such as BERT may not be ideal for fine-tuning ranking
models. Indeed, compared to methods fine-tuned on BERT, these
methods propose pre-training tasks that result in language models
that produce highly effective rankers once fine-tuned. From these

methods, we believe that one clear direction for future research
in the IR domain is to develop more effective pre-trained models
specialised for an IR task that can be fine-tuned with less data to
other tasks or domains. Training these new IR-focused models may
require similar amounts of data and computation to those seen in
the NLP domain. Thus requiring more power and possibly produc-
ing emissions in line with what is generated when pre-training
models like BERT.

Lastly, at the time of writing, there have arisen two end-to-end
transformer models that encapsulate the entire indexing and search-
ing architecture into a single model [78, 93]. These techniques rep-
resent a paradigm shift in how retrieval systems are developed.
No longer does a separate index need to be maintained. Instead,
a single model can be deployed to retrieve and rank documents.
These methods demonstrate that a single end-to-end model can
replace the traditional ‘retrieve and rank’ paradigm of ad hoc search.
However, two main aspects restrict the feasibility of such models:
the model’s size is likely to grow with the number of documents
in the corpus (the two works mentioned above use relatively small
collections), and the model’s effectiveness depends on the number
of parameters (in particular, DSI [78] requires hundreds of highly
specialised TPUv4 units). These models also present a new set of
challenges, such as how to scale these models to large collections,
handle adding new documents without having to reindex the entire
collection (and thus re-train themodel), efficiently index documents,
and process large numbers of queries.

Summary. As a community, we must be mindful of the potential
costs that our research may have. The ways that we measure and
address the environmental impact of our research are just one of
the many brushstrokes that coalesce into a larger landscape that
portray our impacts on society at large. Our emission quantification
measures for assessing the impact of obtaining an experimental
result and our framework for making considerations about the
Green-ness of an IR system can be used to make decisions about
and devise experiments for future IR research and practice.

The IR community is at a turning point in terms of the types
of deep learning models used, the scale of those models, and how
those models are trained. While the investigation into and develop-
ment of such models are valuable research goals, we believe that it
is important to be mindful of the costs and environmental impacts
of these techniques. As the development of new IR-focused deep
learning models grows, similar trends in terms of costs and environ-
mental impact that have been seen in other research communities
may appear. Given the trend in highly sophisticated neural models
for search, we believe that Green IR will become an increasingly
important aspect of IR research.

We firmly believe that the tools and framework presented in this
paper provide a solid foundation that others may use to understand
the impact of their experimentation and to reason about devising
and considering Green Information Retrieval research.
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A POWER AND CARBON TRACKING
Although we list several libraries for calculating the power usage
(and subsequently the kgCO2e) in Table 1, we exclusively use Code-
Carbon [71] for our experiments. Below (Figures 3, 4, and 5) are
listed the three different ways that the library can be used to mea-
sure power usage information in experiments. The library produces
a csv file that records the power usage, estimated carbon emissions,
and other information such as when the experiment was run and the
duration. From the output, we only use the power usage and dura-
tion and calculate kgCO2e using Equation 1. We provide these code
snippets to facilitate the tracking of power usage and estimated car-
bon emissions in retrieval experiments. Interested researchers can
also inspect the code of our experiments where we used this library
that we have made available at https://github.com/ielab/green-ir.

from codecarbon import track_emissions

@track_emissions ()

def experiment ()

# Experiment code goes here

Figure 3: Using a decorator to measure a function.

from codecarbon import EmissionsTracker

tracker = EmissionsTracker ()

tracker.start ()

# Experiment code goes here

tracker.stop()

Figure 4: Using inline functions to measure arbitrary code.

from codecarbon import EmissionsTracker

with EmissionsTracker () as tracker:

# Experiment code goes here

Figure 5: Using a contextmanager tomeasure arbitrary code.
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