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Abstract

Systematic reviews are crucial for evidence-based medicine as they comprehen-
sively analyse published research findings on specific questions. Conducting such re-
views is often resource- and time-intensive, especially in the screening phase, where
abstracts of publications are assessed for inclusion in a review. This study investi-
gates the effectiveness of using zero-shot large language models (LLMSs) for automatic
screening. We evaluate the effectiveness of eight different LLMs and investigate a
calibration technique that uses a predefined recall threshold to determine whether
a publication should be included in a systematic review. Our comprehensive evalu-
ation using five standard test collections shows that instruction fine-tuning plays an
important role in screening, that calibration renders LLMs practical for achieving a
targeted recall, and that combining both with an ensemble of zero-shot models saves
significant screening time compared to state-of-the-art approaches.

1 Introduction

Systematic reviews are used extensively in medicine to comprehensively summarise all
research findings on a specific question. Systematic reviews ensure a high level of rigour
by including all and only those publications that meet predefined criteria, called the set of
‘included documents’.! The selection of included documents starts with searching relevant
databases such as PubMed [58] and the Cochrane Library [17]. This search returns a list
of ‘candidate documents’, which are then screened for relevance and quality using the
researchers’ explicit inclusion and exclusion criteria.

Systematic reviews are labour-intensive and time-consuming, with most resources be-
ing invested in screening candidate documents, a process that can take months. While
there are various methods to assist in optimizing the creation of systematic reviews (Sec-
tion 2), one particular line of work focuses on minimising the number of documents that
need to be manually screened. This has previously been pursued with classifiers to filter
out documents that are not relevant, which may include manually labelling a significant
number of the candidate documents to tune the classifier to the screening task at hand.
Meanwhile, instruction-based generative large language models (LLMs), such as Ope-
nATl’'s ChatGPT,? Llama [46], and Alpaca [44], have demonstrated a remarkable ability
to generate high-quality results in response to user instructions that often do not re-
quire task-specific tuning [44, 63]. In automating systematic reviews, these models have
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been fine-tuned for query formulation [55, 56], as well as document classification and
ranking [56, 35, 4, 43].

In this paper, we focus specifically on the use of zero-shot large language models for
the automatic screening of documents in systematic reviews (Section 3). By ‘zero-shot’,
we mean using generative LLMs without explicitly optimising them for the screening task,
which has the potential to relieve medical experts of any additional labelling burden. We
examine two settings of our approach, an uncalibrated and a calibrated one. Both ap-
proaches prompt the model and use the probability of the next predicted (target) tokens
to categorise documents as either ‘included’ or ‘excluded’; the former directly uses the
token with higher probability between ‘yes’ and ‘no’, the latter introduces the hyperpa-
rameter 6 as a new decision boundary of the classifier, calculated from the difference of
the two tokens instead; 6 is adjusted based on starting documents or previous systematic
reviews.

In our evaluation, we address four research questions to investigate the factors that
influence the effectiveness of the proposed zero-shot generative LLM-based automated
screening method for systematic reviews (Section 4):

RQ1 How does the architecture and size of the LLMs influence effectiveness?
RQ2 How does instruction-based fine-tuning influence effectiveness?

RQ3 How does the calibration of the classifier’s decisions with respect to the target
tokens’ likelihoods influence effectiveness?

RQ4 How does ensembling LLM-based classifiers and current strong neural baselines
influence effectiveness?

Our evaluation results (Section 5) show that LlaMa2-7b-ins is currently the best model
for this task, much better than the 13b parameter variant. In general, instruction-based
fine-tuning always outperforms the base models that have not been fine-tuned, and mod-
els based on LlaMa2 consistently outperform the baseline BERT-based method. Our
approach also slightly outperforms (i.e. is competitive with) the fine-tuned Bio-SIEVE
baseline. The calibrated setting of our method with ensembling achieves the best result
overall and approaches the predefined recall target for the test topics, which indicates
practical use.

2 Related Work

It is a requirement for high-quality systematic reviews to retrieve literature using a
Boolean query [11, 14]; the set of all retrieved documents must then be fully screened
(assessed) for inclusion in the systematic review [11]. Research has explored the au-
tomatic creation of effective Boolean queries [39, 41, 40, 38, 55] (also with respect to
the use of controlled vocabularies such as MeSH [53, 50, 51]), and the ranking of the
set of documents retrieved by the Boolean query (a task called “screening prioritisa-
tion”) [32, 12, 3, 59, 2, 28, 37, 28, 27, 1, 65, 36], in order to begin downstream processes
of the systematic review earlier [33], e.g., acquiring the full-text of studies or results ex-
traction. The datasets that we consider in our experiments, including the CLEF TAR
datasets [22, 24, 23], specifically considered the task of screening prioritisation. In our
paper, we consider a different task, the one of automating the screening phase of the
systematic review; we discuss previous work related to this direction next.

Popular methods for automating the document screening phase are based on text
classification [45]: a classifier is learned for an individual systematic review, typically in
a supervised manner using labels obtained on a subset of the documents to be screened.
Methods include traditional machine learning models like SVM [49, 15], as well as classi-
fiers based on encoder-based LLMs like BERT/BioBERT [35, 6, 10]. Text classification
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Figure 1: Our framework for automatic document screening using generative LLMs.
P(yes|d,t) (P(no|d,t)) is the likelihood of the yes (no) token in the next token proba-
bility list, and 6 is the decision boundary(threshold) used by the calibrated setting.

methods are typically trained incrementally (acquiring labels through cycles of automatic
classification) and often using active learning [48, 9, 21, 20, 31, 5, 42, 62]. It is important
to note that all of the methods above requires fine-tuning using labelled data specific to
systematic review text classification in order to be effective.

In our work, we take a step further by considering the latest developments in gener-
ative LLMs to enhance the screening process. At the same time of developing this work,
others have also explored similar directions. [43] employed ChatGPT for document screen-
ing, finding that ChatGPT’s effectiveness is poor if the set of documents to be screened
is imbalanced — which is often the case in systematic reviews (i.e., typically, there are
many more excluded documents than included among those that have been screened).
Higher classification accuracy than ChatGPT was displayed by Bio-SIEVE [35], a model
fine-tuned from the Guanaco checkpoint [19]— which in turn is based on the Llama archi-
tecture. However, Bio-SIEVE also displayed severe consistency issues across review top-
ics. Importantly, both these works have notable limitations. The first study [43] focused
solely on the closed-sourced ChatGPT model. In addition, the evaluation was limited to
only five systematic review topics and did not consider publicly available datasets with
a broader range of review topics used in previous work. The second study [35] required
to fine-tune the LLM, and relied on a self-constructed dataset for evaluation®, limiting
comparison with previous work. Furthermore, it only reported evaluation with respect
to precision, recall, and accuracy; thus: (i) there is no account for the effect of class im-
balance, (ii) there is no account that high-recall is considered essential in practice when
conducting a systematic review. Conversely, in our work, we (1) consider open-sourced
LLMs in a zero-shot setup, where further fine-tuning is not required, (2) take into ac-
count class imbalance and the high-recall nature of the task when evaluating methods,
(3) rely on publicly available datasets that have been extensively used in previous work,
thus facilitating comparison and reproduction.

3 Generative LLMs for Automatic Document Screen-
ing

Our framework for using a generative LLM for automatic document screening is shown
in Figure 1. The LLM considers a candidate document d € D for the systematic review
topic t € T'; document screening is modelled as a classification task, using the function
I(d,t) : D,T — {0,1}. Document d is included for systematic review ¢ when I(d,t) is 1,

3 Although the dataset is described to be public, it currently only contains the DOIs of the systematic
review topics but not the labels, making reproduction difficult.



and otherwise excluded. The function I(d,t) is computed with respect to the output of
the LLM for the prompt containing d and ¢. We investigate two instantiations of I(d,t),
uncalibrated and calibrated, which we explain below.

Uncalibrated Screening. To determine whether a document should be included or
not, uncalibrated screening directly compares the absolute values of the token likelihoods
P(yes|d,t) and P(no|d,t) as generated by the LLM:

I(d,t) = 1, if P(yes|d,t) = P(no|d,?)
e 0, otherwise.

To ensure deterministic output, we forgo actual text generation with LLM. Instead,
we represent the model decision using solely the probability of the next predicted token
either to be ‘yes’ or ‘no’. In this setting, the LLM returns an answer to the provided
prompt of the decision with respect to the highest likelihood from the two tokens.

Calibrated Screening. Building upon our uncalibrated instantiation, we calculate
the difference between the likelihood of the next token to be yes, or no; then, we use a
threshold to determine the inclusion of the document. We begin by computing the score
S(d,t) as the difference between the yes and no token likelihoods:

P(yes|d,t) — P(no|d,t), if P(yes|d,t) > P(no|d,t)

0, otherwise.

S(d,t) = {

However, the probability distribution of the tokens depends on the individual docu-
ments, and thus is different across the documents. We then use min-max normalisation
to normalise scores across all documents for a review topic t:

S(d,t) — Min({Vd; € D : S(d;,t)}))

Snorm(d7 t) = MaX({de cD: S(d“t)}) — Mln({de €eD: S(dut)})

Next, we identify a threshold 6 using training data; € is determined such that when
used as the lower bound on scores for inclusion decisions, it ensures a minimum recall
rate k. Finally, we use 6 to decide if a candidate document should be included:

Hp) = {1 Srom(d,) 20
T 0, otherwise.

The intuition behind exploring a calibrating screening approach is twofold. First, in
the context of systematic review document screening, recall is of param-ount importance.
For automation techniques to be used in practice, they must ensure the identification
of all (or most) of the documents that should be included in the review. This is cru-
cial because failing to capture all relevant documents may compromise the integrity of
the review’s conclusions and miss the main objective of a systematic review, that is its
comprehensiveness. However, this focus on recall may not be naturally accounted for by
LLMs, especially when accuracy is used to train/fine-tune classification models in the
presence of highly imbalanced classes. Second, the inherent biases in different LLMs can
lead to varying outcomes; some models may be naturally more inclusive, capturing a
broader array of documents, while others may be more exclusive, being overly selective in
their output. To account for these biases and to allow for customisation based on specific
review needs, the calibrated instantiation of I(d,t) offers a more adaptable and nuanced
approach.

Ensembling of Screening Methods. We also consider an ensemble of screening
methods. In particular, in our experiments we will ensemble the two most zero-shot
effective LLMs and the BERT-based method we use as a comparative baseline. We use
CombSUM to fuse the individual methods’ decisions [26]. For Uncalibrated Screening,



we directly combine the likelihoods of the model outputs. The decision rule I(d,t) is
formulated as follows:

I(d,t) = L3 X memethods P (yesld; £) 2 3nentethods Fm(n0ld, 1)
’ 0, otherwise.

For Calibrated Screening, we normalize S}om to make the decisions:

I(d t) = 1’ if ZmGMethods Snorm(d7 t) Z 9
"7 10, otherwise.

4 Experimental Setup
4.1 Considered LLMs

We employ an array of zero-shot generative LLMs that differ in architecture, training
steps, and size (model parameters) to extensively evaluate their effectiveness for automatic
systematic review document screening.

LlaMa: The LlaMa series offers an open-sourced suite of decoder models with pa-
rameter sizes ranging from 7B to 65B. Exceptional in its zero-shot capabilities, LlaMa
outperforms GPT-3 across multiple NLP benchmarks. These models leverage a rich
and diverse training dataset of approximately 1.4 trillion tokens, harvested from various
sources including web pages, code repositories, and Wikipedia [46].

Alpaca: Alpaca has been fine-tuned on the 7B-parameter LlaMa model according
to the self-instruct methodology [57]. Alpaca’s training corpus originates from the text-
davinci-003 model 4, initialized with 175 unique tasks. Preliminary assessments suggest
that Alpaca, through instruction-based fine-tuning, achieves similar effectiveness to the
OpenAT’s text-davinci-003 model [44].

Guanaco: The Guanaco models stem from the LlaMa base models and are obtained
through the memory-efficient 4-bit QLoRA fine-tuning on the OASST1 dataset [25, 60].
This represents a different fine-tuning strategy than that used in the other considered
LLMs. Guanaco models have demonstrated competitive performance against commercial
systems on the Vicuna and OpenAssistant benchmarks [13, 25].

Falcon: Falcon is available in two variants: Falcon-7B and Falcon-40B. These models
were trained on large-scale corpora of 1 and 1.5 trillion tokens, respectively, primarily
sourced from the RefinedWeb dataset [34]. Notably, the Falcon family includes special-
ized “instruct” versions — Falcon-7B-Instruct and Falcon-40B-Instruct — that excel in
assistant-style tasks through fine-tuning on instructional and conversational datasets.

LlaMa2: LlaMa2 extends the original LlaMa family, and comes in three parameter
sizes: 7B, 13B, and 70B. Despite maintaining architectural similarity with its predecessor,
LlaMa2 is trained on an expanded dataset of 2 trillion tokens, a 40% increase from
LlaMa [46, 47]. LlaMa2 also includes a specialized “Chat” variant, LlaMa2 Chat, which
incorporates advanced fine-tuning techniques such as “Ghost Attention” for multi-turn
dialogue consistency and an array of reinforcement learning methods [47].

Overall, we select eight models in our study: LlaMa-7b, Alpaca-7h-ins, Guanaco-7b-
ins, LlaMa2-7b, LlaMa2-13b, Falcon-7b-ins, LlaMa2-7b-ins, LlaMa2-13b-ins.> Table 1
demonstrates the prompts used for LLM-based automatic screening. Note that we do not
include special tokens in the prompt due to page limit, specific prompt for each model
are adapted based on their special token setup. While we could have considered other
models like the popular ChatGPT, their use can be financially prohibitive for our task.

4https://platform.openai.com/docs/models/gpt-3-5

5Note that for consistency of the paper, we name all instruction-tuned models with -ins; The orig-
inal names are: Alpaca-7b-ins: alpaca; Guanaco-7b-ins: guanaco-7b; Falcon-7b-ins: falcon-7b-instruct;
LlaMa2-7b-ins: LlaMa2-7b-chat; LlaMa2-13b-ins: LlaMa2-13b-chat;
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Table 1: Input types and prompts designed for each model. Italicised text indicates values
that are replaced with respective content.

Model Prompt

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.

### Instruction:

Answer ‘yes’ or ‘no’ to Judge if the following retrieved study should be included by
the systematic review?

### Input:

Review: review_title

Study: candidate_document

### Response:

Answer ‘yes’ or ‘no’ to Judge if the following retrieved study should be included by
the systematic review?

Review: review-_title

Study: candidate_-document

The answer is ¢

Alpaca

All
Other
Models

The predicted cost will be USD$4,000 and USD$80,000 if we use GPT-3.5-turbo and
GPT-4, respectively. In our experiments, all employed models were configured to have a
maximum token limit of 2048. This adjustment was particularly applied to the Alpaca
model (original model has a limit of 512) and LlaMa2 models(original model has a limit
of 4096) to ensure uniformity across all models. Consequently, we observed no instances
of truncation in the experimental data.

4.2 Datasets

We experiment on the CLEF TAR datasets and the Seed Collection dataset. Four datasets
were released as part of CLEF TAR [22, 24, 23], covering different types of systematic
reviews. The 2017 dataset contains 50 Diagnostic Test Accuracy (DTA) topics; 2018 adds
30 more; while in 2019, a dataset consisted of 8 DTA topics, while another included 40
intervention review (Int) topics. These datasets contain relevance assessments for about
600,000 documents in total, and for each topic, the review title and the protocol file are
also provided. These datasets are distributed with standard train-test splits; however,
because we consider the zero-shot capabilities of the investigated models, we do not use
these splits and instead test on all available topics.

The Seed Collection dataset consists of 39 review topics and over 50,000 candidate doc-
uments [52].5 For each topic, the review title and inclusion/inclusion labels are provided
along with a set of “seed documents”: documents that were provided to the researcher
designing the search strategy (query) for the review and that provide examples of docu-
ments related to the review (most are likely to meet the inclusion criteria, but it is possible
some do not). In our experiment, we only evaluate based on the retrieved documents;
included documents that are not in retrieved document set are removed.

5 Results

5.1 Baseline

We compare the effectiveness of zero-shot LLMs against a baseline that relies on the BERT
architecture but uses a domain-specific variant as backbone: BioBERT [29, 54]. BioBERT
employs the same architecture as BERT, but the corpus used for self-supervised training
contains biomedical text (instead of general domain text like for BERT). BioBERT has
been shown effective across a range of applications related to health tasks, including for
screening prioritisation on medical systematic reviews on the datasets we consider [54],

6We removed topic 18 as no relevant document exited in the candidate document list (the topic only
contains one relevant document)



Table 2: Comparison of uncalibrated results between baseline method and generative
large language models. Statistical significance, determined by a Student’s two-tailed
paired t-test with Bonferroni correction (p < 0.05), between the top-performing method
LlaMa2-7b-ins and others is marked by *.

Model | P R B-AC _ F3 Suc \WEE]
BioBERT | 0.06 0.95% 0.61*  0.30 0.74% 0.26*
5 LlaMa-7b 0.04* 0.92* 0.48%  0.24*%  0.46* 0.03*
S LlaMa2-7b 0.07 0.50% 0.60*  0.23*  0.02* 0.70%
¢ LlaMa2-13b 0.04* 1.00% 0.50*  0.25%  0.98* 0.00*
E  Falcon-7b-ins 0.05* 0.92% 0.52*  0.25%  0.44 0.12*
g Alpaca-Tb-ins 0.04% 0.92% 0.51*  0.25%  0.38 0.11%
LlaMa2-7b-ins 0.08 0.87 0.72 0.35 0.26 0.56
LlaMa2-13b-ins | 0.19%  0.41* 0.66*  0.31 0.04* 0.91%*
Guanaco-Th-ins | 0.04* 1.00*%  0.50%  0.25%  1.00%*  0.00*
BioBERT 0.06 0.97* 0.59* 0.9 0.87* 0.19%
% LlaMa-7b 0.05% 0.92% 0.48*  0.25%  0.33 0.04*
S LlaMa2-7b 0.07 0.49* 0.59%*  0.22*  0.03* 0.69*
g LlaMa2-13b 0.05* 1.00% 0.50*  0.26 1.00*%  0.00*
K Falcon-7b-ins 0.05* 0.92 0.51*  0.25%  0.40 0.11*
= Alpaca-Tb-ins 0.05% 0.91 0.51*  0.25%  0.30 0.11%*
O LiaMa2-7b-ins 0.09 0.88 0.75 0.37 0.27 0.59
LlaMa2-13b-ins | 0.26%  0.36* 0.66*  0.30 0.00* 0.94%
Guanaco-Th-ins | 0.05% 1.00%  0.50%  0.26 1.00*%  0.00*
¢ BioBERT | o0.07 0.99 0.58 0.30 0.88 0.18%
3
Y LlaMa-7b 0.07 0.93 0.48%  0.27 0.25 0.03*
2 LlaMa2-7b 0.08 0.48% 0.58%*  0.23 0.00%* 0.68
S  LlaMa2-13b 0.07 1.00 0.50*  0.28 1.00 0.00*
4 Falcon-Tb-ins 0.07 0.95 0.54*  0.29 0.50 0.12*
@ Alpaca-Tb-ins 0.07 0.91 0.52%  0.28 0.25 0.12*
= LlaMa2-7b-ins 0.09 0.92 0.71 0.35 0.62 0.49
O LiaMa2-13b-ins | 0.19 0.49% 0.69 0.32 0.00% 0.87*
Guanaco-Th-ins | 0.07 1.00 0.50%  0.28 1.00 0.00%
Model | P R B-AC _ F3 Suc \WEE]
. BioBERT | o.10 0.98% 0.58%  0.32 0.90% 0.16*
=
3 LlaMa-7b 0.05* 0.86 0.47%  0.26 0.30 0.08*
2  LlaMa2-7b 0.08 0.30* 0.55%  0.18*  0.05* 0.80*
8§ LlaMa2-13b 0.05 1.00% 0.50*  0.29 0.97* 0.00*
g Falcon-7b-ins 0.05 0.91 0.50*  0.27 0.57 0.09%*
B Alpaca-Tb-ins 0.05 0.87 0.49%  0.27 0.30 0.12*
3 LlaMa2-7b-ins 0.08 0.90 0.70 0.35 0.42 0.48
LlaMa2-13b-ins | 0.17*  0.45* 0.67 0.33 0.05*% 0.87*
Guanaco-Th-ins | 0.05 1.00%  0.50%  0.29 1.00*%  0.00*
- BioBERT | 0.04 0.93 0.54%  0.24 0.77* 0.16*
<}
£ LlaMa-7b 0.04 0.89 0.48*  0.21 0.56 0.07*
& LlaMa2-7b 0.04 0.29% 0.53*%  0.15%  0.03* 0.78%
3 LlaMa2-13b 0.04 1.00*  0.50*  0.23 1.00*%  0.00*
O Falcon-Tb-ins 0.04 0.93 0.50*  0.22 0.69 0.07*
T Alpaca-Th-ins 0.04 0.90 0.50*  0.22 0.49 0.10%
$  LlaMa2-7b-ins 0.05 0.90 0.66 0.27 0.54 0.40
@ LlaMa2-13b-ins | 0.13%  0.48* 0.67 0.28 0.05% 0.85%
Guanaco-Th-ins | 0.04 1.00%  0.50%  0.23 1.00*%  0.00*

and thus is a strong baseline. To use BioBERT in our text classification task, we concate-
nate the topic title with the candidate document to form the input to the backbone. A
classification head based on a sigmoid activation function is then used to determine the
inclusion of a candidate document for the specified topic.”

5.2 Evaluation Measures

We use set-based metrics for evaluation: precision, recall, and F-3, which emphasize
the importance of recall over precision. Additionally, we adopt balanced accuracy (B-
AC) as a pivotal metric, as it particularly suits the nature of the systematic review
document screening task, where excluded documents substantially outnumber included

ones; B-AC = % (% + %) We also report the success rate, which quantifies the

fraction of topics achieving a pre-specified target recall. We adopt a representative target
recall of 0.95, a standard threshold for systematic review document screening [7, 18, 8]:
often systems that do not achieve at least 0.95 recall are deemed of no practical use for
systematic review automation. Lastly, we gauge the efficiency of automatic document

"In the uncalibrated setting for BioBERT, we established a decision threshold of 0.5 to determine the
inclusion of a document in a review topic. Specifically, a document is included if the BioBERT output
satisfies the condition output > 0.5; otherwise, it is excluded.



Table 3: Comparison between the Calibrated (Cal) and Uncalibrated (Unc) approaches
using the BioBERT model, LlaMa2-7b-ins model (7b-ins), the LlaMa2-13b-ins model
(13b-ins) and the Ensemble of the three models (Ensemb). The calibrated method’s
number or character in the bracket () denotes the pre-set target recall (0.95 & 1) or using
seed documents (S). Statistical significance for each generative model across different
datasets is assessed using a Student’s two-tailed paired t-test with a Bonferroni correction
(p < 0.05) with respect to the uncalibrated approach, denoted by *. The highest evaluated
scores for each dataset are bolded.

Model Setting | P R B-AC F3 Suc WSS
° Unc 0.06 0.95 0.61 0.30 0.74 0.26
Qﬁ‘é Cal(0.95) 0.06 0.92 0.64 0.31 0.50* 0.34*
Q,@ Cal(1) 0.06 0.97 0.60 0.29 0.82 0.23
~ < Unc 0.08 0.87 0.72 0.35 0.26 0.56
— @/‘ Cal(0.95) 0.06* 0.92% 0.69%* 0.32 0.52 0.44
] 4 Cal(1) 0.05% 0.99* 0.60* 0.28 0.96 0.20
)
E <2 Unc 0.19 0.41 0.66 0.31 0.04 0.91
= 9/‘ Cal(0.95) 0.06* 0.93 0.59* 0.28 0.50%* 0.25*
o 2 Cal(1) 0.05% 0.98 0.53% 0.26 0.88% 0.08%
0 Unc 0.31 0.13 0.56 0.13 0.00 0.98
6@‘0 Cal(0.95) 0.08 0.93* 0.72 0.35%* 0.52%* 0.50*
I Cal(1) 0.06 0.97* 0.63 0.30 0.90* 0.29*
° Unc 0.06 0.97 0.59 0.29 0.87 0.19
Q,‘~Q§ Cal(0.95) 0.07 0.91% 0.63 0.30 0.57* 0.33*
Q?Q) Cal(1) 0.06 0.97 0.59 0.29 0.87 0.21
» ~ Unc 0.09 0.88 0.75 0.37 0.27 0.59
—~ w;‘ Cal(0.95) 0.08% 0.94%* 0.71% 0.35% 0.50 0.46
ST Cal(1) 0.06* 0.99% 0.62% 0.30 1.00 0.24
)
E <2 Unc 0.26 0.36 0.66 0.30 0.00 0.94
= ‘O) Cal(0.95) 0.06 0.94%* 0.59* 0.29 0.47* 0.22%
S N Cal(1) 0.05 0.97 0.53* 0.27 0.80* 0.08*
Unc 0.35 0.12 0.54 0.12 0.00 0.95
6@‘0 Cal(0.95) 0.09* 0.94* 0.75 0.38* 0.50* 0.54*
< Cal(1) 0.06 0.99* 0.64 0.32* 0.93* 0.28*
° Unc 0.07 0.99 0.58 0.30 0.88 0.18
Q}Q:@ Cal(0.95) 0.08 0.89 0.59 0.26 0.50 0.27
Q@ Cal(1) 0.08 0.91 0.59 0.27 0.62 0.25
2 <% Unc 0.09 0.92 0.71 0.35 0.62 0.49
; v,‘ Cal(0.95) 0.10* 0.91%* 0.71% 0.34 0.50 0.50
— A Cal(1) 0.08* 0.97* 0.66 0.32 0.75 0.34
o
E < Unc 0.19 0.49 0.69 0.32 0.00 0.87
& e Cal(0.95) 0.08 0.95 0.56 0.29 0.50* 0.16*
s N Cal(1) 0.07 0.99 0.51 0.28 0.88* 0.03*
0 Unc 0.31 0.21 0.59 0.19 0.00 0.96
g2 Cal(0.95) 0.10 0.91 0.73 0.34% 0.50%* 0.52%
@0 Cal(1) 0.09* 0.99 0.64 0.32* 1.00* 0.28%*
Model Setting ] P R B-AC F3 Suc WSS
° Unc 0.10 0.98 0.58 0.32 0.90 0.16
‘b-\Q(ﬁ Cal(0.95) 0.10 0.87* 0.59 0.29 0.50%* 0.31%
Qﬁ) Cal(1) 0.10 0.90* 0.59 0.30 0.62* 0.27*
k < Unc 0.08 0.90 0.70 0.35 0.42 0.48
n -~ Cal(0.95) 0.08* 0.91%* 0.67* 0.34 0.50 0.42
% «° Cal(1) 0.07* 0.93* 0.64* 0.33 0.65 0.34
a
FYL <7 Unc 0.17 0.45 0.67 0.33 0.05 0.87
m *0'\ Cal(0.95) 0.07* 0.90 0.58 0.30 0.50%* 0.25%*
5 \,{b Cal(1) 0.06* 0.94 0.55 0.29 0.62% 0.16*
Unc 0.35 0.23 0.58 0.22 0.05 0.92
60/“\ Cal(0.95) 0.09* 0.93%* 0.70 0.37* 0.50%* 0.45*
@‘\ Cal(1) 0.08* 0.96% 0.67 0.35% 0.68% 0.35%
Unc 0.04 0.93 0.54 0.24 0.77 0.16
Q;\o S Cal(0.95) 0.05 0.80* 0.55 0.22 0.50* 0.29*
@QN Cal(1) 0.05 0.83 0.55 0.23 0.53* 0.26
® Cal (8S) 0.04 0.93 0.54 0.23 0.76 0.15
- Unc 0.05 0.90 0.66 0.27 0.54 0.40
o \\“% Cal(0.95) 0.05* 0.90* 0.66 0.28% 0.51 0.41
E (\‘O/ Cal(1) 0.05* 0.92% 0.65 0.27* 0.56 0.38
< Cal (S) 0.05 0.97* 0.6* 0.26 0.77* 0.22%
I}
O > Unc 0.13 0.48 0.67 0.28 0.05 0.85
o N Cal(0.95) 0.06% 0.87 0.64% 0.27% 0.51% 0.39%
3 @" Cal(1) 0.05% 0.93 0.59% 0.26 0.59% 0.25%
0 Cal (S) 0.06* 0.87* 0.63 0.29 0.54* 0.38*
© Unc 0.16 0.18 0.52 0.14 0.00 0.86
& Cal(0.95) 0.07* 0.86* 0.71 0.31* 0.49* 0.53*
Qob Cal(1) 0.07* 0.88%* 0.70 0.30* 0.56* 0.49*
Cal (S) 0.04* 1.00* 0.55 0.25% 0.97* 0.10%*

screening using the Work Saved by Sampling at a specific recall level (WSS) [16]. This
is expressed as: WSS = w — (1 —r) where N denotes the total sample count and



Table 4: Comparison of Fine-tuned baseline to our method; Statistical significance, de-
termined by a Student’s two-tailed paired t-test with Bonferroni correction (p < 0.05),
between Uncalibrated Bio-SIEVE method and others is marked by *.

Model Setting | P R B-AC F3 Suc WSS
Original/Calibrated ‘ 0.232 0.576 0.727 0.429 0.111 0.858
Bio-SIEVE Calibrated(Recall=0.95) | 0.102* 0.877* 0.683 0.348 0.481%* 0.471%*
Calibrated (Recall=1) ‘ 0.088%* 0.945* 0.666 0.339 0.704%* 0.369*
Uncalibrated ‘ 0.078%* 0.920%* 0.725 0.359 0.333 0.513%*
LlaMa2-Tb-ins  Calibrated (Recall=0.95) | 0.068%  0.935% 0.685 0.333 0.481%* 0.421%
Calibrated(Recall=1) ‘ 0.059%* 0.990* 0.621%* 0.311 1.000* 0.241%*
Uncalibrated ‘ 0.400* 0.204* 0.594* 0.199* 0.037 0.972*
Ensemble Calibrated (Recall=0.95) | 0.095%  0.937* 0.729 0.373 0.519* 0.500%*
Calibrated (Recall=1) ‘ 0.068* 0.981* 0.630%* 0.322 0.889* 0.266*

r signifies the recall level; we set r to 1, representing total recall.

5.3 Threshold Setting

For the calibration setting, the threshold 6 value needs to be set. We devise two ap-
proaches to determine 6:

1. Extrapolation from Collection: we perform a leave-one-out experiment across
all systematic review topics in a dataset. We identify threshold values that have
consistently yielded robust results in the sample topics (all other topics except the
target topic)—optimizing for a high recall rate—using the median score of candidate
documents that achieved the target recall. The obtained threshold is then applied to
the target topic under consideration. Note that cross-validation is used to determine
the 0 value only: the LLMs are still zero-shot. This is, however, a somewhat artificial
setting, in that if training material was available for determining 6, then it could
also be used to tune the LLMs (though computational costs may prevent this but
our method does not require training of the LLM itself). We will consider a more
appropriate option next.

2. Calibration with Seed Studies: we employ the uncalibrated LLM to generate
inclusion scores for a set of seed studies (exemplar documents that are often identi-
fied prior to searching and screening). If the lowest score for a seed study is below
the classifier’s threshold for inclusion (decision boundary), then the threshold is
lowered to the score obtained by that seed study: we use this as the new threshold
for the calibrated LLM. This adjustment aims to improve recall. Typical targets
for recall for systematic review are 0.95 or 1; we then experiment with these values
to determine 6.

RQ1: Architecture and Size of Model. Consider the results reported in Table 2.
For model architecture, we compare four models: Falcon-7b-ins, Alpaca-7b-ins, LlaMa2-
7b-ins and Guanaco-2-7b-ins — all of which have the same number of parameters. The
results indicate that LlaMa2-7b-ins is the most effective for the task, outperforming the
others across all evaluation metrics except recall and success rate. Specifically, this model
obtained a high WSS while incurring only a marginal drop in recall: a significant loss was
observed only on CLEF-2017. Concerning success rate, LlaMa2-7b-ins exhibited compa-
rable performance to its counterparts, showing no statistically significant differences.

For model size, we consider two variants of the LlaMa2-ins architecture: one with 7
billion parameters (LlaMa2-7b-ins) and another with 13 billion parameters (LiaMa2-13b-
ins). Our findings suggest a trade-off between recall and WSS. Specifically, the 7-billion
parameter variant obtains significantly higher recall, but this comes at the expense of
reduced savings, evidenced by significantly lower WSS. Regarding B-AC, LlaMa2-7b-ins



generally outperforms its larger counterpart across multiple datasets, except for the Seed
Collection. Statistically significant differences in B-AC were only noted for CLEF-2017
and CLEF-2018.

RQ2: Impact of instruction fine-tuning. Consider again Table 2. We con-
trast instruction-fine-tuned models against their base counterparts: LlaMa2-7b-ins VS.
LlaMa2-7b, LlaMa2-13b-ins VS. LlaMa2-13b, Alpaca-7b-ins VS. LlaMa-7b. Across all
differences, a significant improvement in B-AC is observed. Nevertheless, the models ex-
hibit divergent behaviours in other metrics. For LiaMa-7b and LlaMa2-13b, fine-tuning
leads to higher WSS at the expense of reduced recall. Conversely, LiaMa2-7b-ins exhibits
a significant decline in WSS but obtains higher recall, success rate, and F3 except in
the CLEF-2019-dta, where the F3 improvement is not statistically significant. We also
conducted a comparative evaluation with Guanaco-7b-ins, a QLoRA fine-tuned model.
While it does outperform LiaMa-7b in B-AC, the model classifies all candidate documents
as relevant, nullifying any practical applicability for systematic review screening.

In summary, our analyses suggest that instruction-based fine-tuning is generally bene-
ficial for improving document screening accuracy. However, the specific gains — whether
in savings or recall — depend on the base model’s architecture. Our experiments also
suggest that QLoRa fine-tuning does not yield an effective model for this particular task.

RQ3: Impact of Calibration. Consider Table 3. We find that calibrated models
reliably meet their pre-set recall targets and provide an attractive solution for practical
implementation for automatic document screening. Specifically, in our tests that consid-
ered the extrapolation from collection calibration, approximately 50% of the topics met
the pre-set recall target of 0.95 by comparing success rates obtained in each dataset (note
that success rate in our experiments is set to measure a 0.95 recall level). This further
improves (success rate between 0.56 and 1.00) when the target recall for determining
the threshold is set to 1. We further compare the performance of three calibrated mod-
els, BioBERT, LlaMa2-7b-ins and LlaMa2-13b-ins. Generally, the 7-billion parameter
LlaMa2 model significantly outperforms the two other models in both B-AC and WSS.
As for success rate and recall, the models exhibit similar effectiveness; LlaMa2-7b-ins
performs the same or better in 60% of the cases for success rate and in 40% of cases for
average recall.

The calibration with seed documents method could only be tested on the Seed Col-
lection, as CLEF datasets have no seed studies. In this case, LlaMa2-7b-ins consistently
obtains higher recall: 70% of topics achieved perfect recall, compared to only 50% using
the other calibration method. Although calibration with seed studies generally improves
recall, our analysis indicates that LlaMa2-13b-ins displays more volatile effectiveness in
this setting, possibly due to the varying quality and quantity of seed documents across
different topics.

Ensemble of Automatic Screening Methods. Consider Table 3 with respect to
the Ensemble results, obtained by ensambling LlaMa2-7b-ins, LlaMa2-13b-ins and the
BioBERT baseline. The Ensemble strategy yields consistently higher B-AC and WSS,
when calibrated. Moreover, when pitted against individual generative LLMs calibrated
with the same threshold recall, the Ensemble method obtains higher WSS, precision, and
F3. Exceptions are observed in CLEF-2018 and Seed Collection, where the Ensemble
strategy registers lower success rates. Interestingly, the Ensemble’s performance dips in
recall when not calibrated. This decline may be attributed to the model’s aggressive
document exclusion strategy, as evidenced by its consistently high WSS across datasets.
Overall, our findings indicate that a calibrated Ensemble approach generally outperforms
single generative LLMs.

6 Discussion and Outlook

Comparison with fine-tuned LLMs. Although this study aimed to investigate the
effectiveness of zero-shot generative LLMs in systematic review document screening, we
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are also interested in comparing our method to the state-of-the-art fine-tuned model. For
this comparison, we consider the Bio-SIEVE approach, a fine-tuned model for systematic
review document screening, and compare it with our best methods in Table 4.8 We
also apply our calibration approach to Bio-SIEVE. Surprisingly the most effective model,
LlaMa2-7b-ins, obtains a B-AC comparable to Bio-SIEVE, and our Ensemble method is
even more effective than Bio-SIEVE, although differences are not significant.

Another noteworthy observation is Bio-SIEVE’s low recall and success rate, especially
when not calibrated (original). These results raise concerns regarding Bio-SIEVE’s prac-
tical utility for the screening task, as a low recall is often not accepted by the researchers
conducting the review as it translates into missing important studies. While calibration
improves Bio-SIEVE’s recall, this is still inferior to our zero-shot model under the same
calibration setting. This finding suggests that although fine-tuning can improve effective-
ness, it requires careful calibration for systematic review document screening. Looking
forward, fine-tuning remains an interesting avenue for research but may necessitate alter-
native calibration strategies for practical utility for this task.

Variation in model input prompt. While we only considered one type of prompt
for each model, it is important to highlight that generative LLMs are sensitive to prompt
formulation [61, 64, 30]. Due to page constraints, we could not deeply discuss the effects
of alternative prompt formulations, such as those based on inclusion/exclusion criteria or
seed studies. However, preliminary investigations into these aspects show a similar trend
to what is observed when solely using review topic titles as prompts. These additional
results are provided in a supplementary digital appendix for completeness.’

7 Conclusion

We comprehensively evaluated zero-shot LLMs for systematic review document screening
and introduced a calibration method for tuning the model output. We further explored the
utility of an ensemble method that combines the top zero-shot LLMs with the BioBERT
baseline.

Our results highlight the importance of output calibration when applying generative
LLMs to systematic review document screening. This calibration maintains review quality
and reliably by meeting pre-set recall targets, thus offering the flexibility to adjust the
model to the specific requirements of a systematic review. Furthermore, when calibrated,
our ensemble method outperforms the current state-of-the-art fine-tuned model, Bio-
SIEVE [35]. We also emphasized the role of instruction-based fine-tuning in effectively
leveraging generative LLMs for this application, while we showed that QLoRa-tuning does
not yield effective results for this task.

The findings reported in the paper suggest that LLM-based methods can be created
for automatically screening documents for systematic reviews, leading to considerable
savings in manual effort. Furthermore, this can be done without requiring expensive fine-
tuning (both in terms of labelling and computation). The fact that a high recall level
can be obtained across a large number of different types of reviews suggests that these
methods might be mature enough for actual adoption in systematic review workflows.
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