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ABSTRACT
In this perspective paper we study the effect of non independent
and identically distributed (non-IID) data on federated online learn-
ing to rank (FOLTR) and chart directions for future work in this
new and largely unexplored research area of Information Retrieval.
In the FOLTR process, clients participate in a federation to jointly
create an effective ranker from the implicit click signal originating
in each client, without the need to share data (documents, queries,
clicks). A well-known factor that affects the performance of feder-
ated learning systems, and that poses serious challenges to these
approaches, is that there may be some type of bias in the way data
is distributed across clients. While FOLTR systems are on their own
rights a type of federated learning system, the presence and effect
of non-IID data in FOLTR has not been studied. To this aim, we first
enumerate possible data distribution settings that may showcase
data bias across clients and thus give rise to the non-IID problem.
Then, we study the impact of each setting on the performance of the
current state-of-the-art FOLTR approach, the Federated Pairwise
Differentiable Gradient Descent (FPDGD), and we highlight which
data distributions may pose a problem for FOLTR methods. We also
explore how common approaches proposed in the federated learn-
ing literature address non-IID issues in FOLTR. This allows us to
unveil new research gaps that, we argue, future research in FOLTR
should consider. This is an important contribution to the current
state of FOLTR field because, for FOLTR systems to be deployed,
the factors affecting their performance, including the impact of
non-IID data, need to be thoroughly understood.
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1 INTRODUCTION
Online learning to rank (OLTR) [18, 31, 32, 54] aims to learn effec-
tive rankers from users search interactions, i.e., queries and clicks
on search engine result pages (SERPs), by iteratively training and
updating a production ranker through online interventions. The
use of clicks, rather than relevance labels, reduces the high cost
and time required to collect labels from editorial teams; it also bet-
ter aligns with the user’s true preferences than labels provided by
third-party judges. The execution of this training process online
rather than offline (e.g., as in counterfactual LTR [19]) addresses
issues associated with rapid changes in query intents [55].

Traditional OLTR solutions assume the ranker resides on a cen-
tral server that controls the production of SERPs, including the
online intervention made to explore the ranker’s parameter space
based on the index and that logs every user interaction (queries,
clicks). This architecture, however, is inadequate for search con-
texts where the data is private or confidential and cannot be shared
with the central search service or where users demand their in-
teractions to be private, i.e. not to share clicks on SERPs with the
server. Federated OLTR [21, 43] (FOLTR) has been canvassed as a
solution to such situations. In FOLTR, private user data is kept on
the user’s device. The data is used locally within the user device to
learn updates to a globally shared ranker. Local updates from all
clients in the federated system are then shared to a central server1
(thus without sharing of actual user data), which is responsible for
the aggregation of the local updates, the consequent update of the
global model and the sharing of the new global model with the
clients (see Figure 2 for a concrete example of a FOLTR system).
The object of FOLTR is to federatively create a ranker that is more
effective than each of the individual rankers users could create on
each of the users private data – and ideally this federated ranker
should perform as well as a ranker that is created using all user
data in a centralised manner.

Research on the effectiveness of the FOLTR paradigm and the
factors that affect its performance is still limited to date, with only
a couple of proposed and empirically investigated methods [21,
43, 44]. Importantly, research on FOLTR has fully ignored a key
issue affecting the performance of federated learning (FL) systems:
the presence of bias in how the training data is divided across the
clients that join the federation. In other words, the fact that clients
may hold non-independent and identically distributed (non-IID)
data [53].

Non-IID data can pose severe threat to the effectiveness of a fed-
erated learning method. Models trained federatively in the presence
of non-IID data across the clients that participate in the federation,

1We note that while the use of a single central server is common among federated
learning methods (and certainly is the only setup investigated so far for FOLTR),
alternative setups are possible and include peer-to-peer federated systems with no
central servers [22, 37, 41], and federated systems with multiple central servers.
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Figure 1: Illustration of themodel divergence problem in FL,
adapted from Zhu et al. [53]. 𝜃𝑡 is the ideal global model un-
der centralised learning, and 𝜃

𝑎𝑣𝑔
𝑡 is the average model cre-

ated from the local models of Client 1 (𝜃1𝑡 ) and Client 2 (𝜃2𝑡 )
through FedAvg [29].

in fact, display significantly lower effectiveness, and at times ex-
perience difficulties for the model to converge [53]. Effectiveness
degradation can mainly be attributed to the weight divergence be-
tween the local models resulting from the non-IID distribution of
the data across the clients [53]. Local models with the same ini-
tial parameters will converge to different models because of the
heterogeneity of the local data distributions. This divergence will
increase as more communication rounds of the federated learning
algorithm are performed. This slows down or even impedes model
convergence, worsening the performance of the global model. An
illustration of the phenomenon of model divergence for both IID
and non-IID data in federated learning is given in Figure 1. The
ideal global model (𝜃𝑡 , under centralised learning) and actual global
model (𝜃𝑎𝑣𝑔𝑡 , average model created through FedAvg [29]) coincide
when data is IID, but diverge when data is non-IID, showing that
this is a sizeable problem when the data is non-IID.

This perspective paper 2 provides a systematic understanding of
when non-IID data may occur in the FOLTR setting and the impact
of non-IID data in such cases. This crucial research sheds light on
the factors that need to be considered when devising and deploying
FOLTR methods. It also details the experimental conditions for sim-
ulating non-IID data in FOLTR, paving the way for the development
and adaptation to OLTR of existing and new methods for dealing
with non-IID data. With this regard, we also show how some of the
methods proposed in the federated learning literature to deal with
non-IID data can be cast in the FOLTR framework and the gaps
that still exist in effectively addressing non-IID data in FOLTR.

2 RELATEDWORK
2.1 Federated Learning with non-IID data
Zhu et al. have compiled a comprehensive survey on the impact of
non-IID data on federated learning [53], also reviewing the current
research on handling these challenges. Early work from Zhao et
al. [52] shows a deterioration of the accuracy of federated learning
if non-IID or heterogeneous data is present; they also provide a
solution to this problem by creating a small subset of globally

2In this paper, if not specified otherwise, we only consider horizontal FL [47] and we
believe our framework can be applied to both cross-device and cross-silo federated
learning [20].

shared data between all clients (local devices). Li et al. [26] analyse
the convergence of the federated learning algorithm FedAvg [29]
(which is a component of the FOLTR method we rely upon for
investigation [43]) on non-IID data and empirically show that data
heterogeneity slows down the convergence. This raised attention
to the presence of non-IID data in federated learning.

Generally speaking, existing approaches for handling non-IID
issues in federated learning can be classified into three categories:
data-based approaches, algorithm-based approaches, and system-
based approaches [53]. Data sharing [52] and data augmentation [11]
are two kinds of typical data-based approaches. While they achieve
state-of-the-art performance, they fundamentally conflict with the
objective of federated learning: that of not sharing data across
clients. This is because, for example, methods such as data shar-
ing require a subset of private data to be shared across all clients.
While proposals have been made to use synthetic, rather than real,
data for the data sharing mechanism [41] it is unclear (1) what
the effectiveness loss of the sharing of synthetic data in place of
real data is, and (2) whether the sharing of synthetic data could
still jeopardise privacy as this synthetic data is typically gener-
ated from real data, and thus analysis of the synthetic data may
reveal key aspects of and information contained in the real data.
Algorithm-based approaches mainly focus on personalisation meth-
ods like local fine-tuning of a neural model [42] and Personalized
FedAvg (Per-FedAvg) [12] – which are both limited mainly to neu-
ral models – or the casting of the federated learning process into a
multi-task learning problem [39]. System based approaches adopt
clustering [38] and tree-based structure [15] to deal with non-IID
data. Limitations exist among all proposed approaches, and this is
still a much unexplored line of research.

2.2 Federated Learning in IR
We provide an overview of the use of federated learning in OLTR in
section 3. That section also introduces the FOLTR method used in
the empirical experimentation in this paper: the Federated Pairwise
Differentiable Gradient Descent (FPDGD) method [43], which is
the current state-of-the-art in FOLTR.

Aside from its usage in OLTR, recent works have applied fed-
erated learning in other IR contexts. Zong et al. [56] provide a
solution for cross-modal retrieval in a distributed data storage sce-
nario, which uses federated learning to reduce the potential privacy
risks and the high maintenance costs encountered when dealing
with a large amount of training data. Wang et al. [45] study learning
to rank (but not OLTR) in a cross-silo federated learning setting;
this work is aimed at helping companies that have access to limited
labelled data to collaboratively build a document retrieval system ef-
ficiently. Hartmann et al. [16] use federated learning to improve the
ranking of suggestions in the Firefox URL bar, so that the training of
the ranker on user interactions is performed in a privacy-preserving
way; they show that this federated approach improves on the sug-
gestions produced by the previously employed heuristics in Firefox.
Yang et al. [48] describe the use of federated learning for search
query suggestions in the Google Virtual Keyboard (GBoard) prod-
uct. Here, a baseline model identifies relevant query suggestions
given a user query; candidate suggestions are then filtered using a
triggering model learnt using federated learning. Closest to FOLTR



Figure 2: Schematic representation of the FOLTR setting.

is the work of Li and Ouyang [23], who devise an offline federated
learning method for counterfactual learning to rank from historic
click logs.

Aside from the previous examples, federated learning has also
seen adoption in the area of personalised search [14], which aims
to return search results that cater to the specific user’s interests.
While feature-based [4, 5, 17] and deep learning-based [13, 40, 50]
methods are widely used in this area, user data privacy has been
often overlooked – this is particularly the case when considering
the user’s query logs which are collected by the central server to
create the personalised ranker. To tackle this issue, Yao et al. [49] re-
cently proposed a privacy protection enhanced personalised search
framework which adapts federated learning to the state-of-the-art
personalised search model. While not directly related to the OLTR
context we consider here, these related lines of research could bene-
fit from the investigations and considerations reported in this paper,
as the problem of non-IID data in these previous contexts has also
been ignored.

3 FOLTR FRAMEWORK AND FPDGD
We next briefly describe the FOLTR framework, including the Feder-
ated Pairwise Differentiable Gradient Descent (FPDGD)method [43],
which represents the current state-of-the-art in FOLTR and that we
use as a representative method in our experiments to investigate
the effect of non-IID data on FOLTR.

The federated online learning to rank setting is pictured in Fig-
ure 2. Searchable data is stored by each client ( 1 ) and not shared
with the centralised server or other clients. Different clients may
hold all, a portion of, none of the same searchable data. Queries and
user’s clicks occur at a client side ( 2 and 3 ) and are not commu-
nicated to the centralised server or other clients: search is indeed
entirely performed on the user device ( 2 ). Each client exploits
search interactions to perform local model updates to the ranker;
for FPDGD, the routine executed by the client is shown in Algo-
rithm 1, and the PDGD update is shown in Algorithm 2. Each client
considers 𝐵 interactions before updating the local ranker using the
PDGD gradients. These local updates are then shared with the cen-
tral server ( 5 ), which in turn combines the ranker updates from the
clients to produce a revised ranker ( 6 ); for FPDGD, this is achieved

Algorithm 1 FederatedAveraging PDGD.
• set of clients participating training:𝐶 , each client is indexed by 𝑐 ;
• number of local interactions for client 𝑐: 𝑛𝑐 (

∑ |𝐶 |
𝑐=1 𝑛𝑐 = 𝑛)

• local interaction set: 𝐵, model weights: 𝜃 .
Server executes:
initialize 𝜃0; scoring function: 𝑓 ; learning rate: 𝜂
for each round 𝑡 = 1, . . .∞ do

for each client 𝑐 ∈ 𝐶 in parallel do
𝜃𝑐
𝑡+1, 𝑛𝑐 ← ClientUpdate(𝑐, 𝜃𝑡 )

𝜃𝑡+1 ←
∑ |𝐶 |
𝑐=1

𝑛𝑐
𝑛 𝜃𝑐

𝑡+1

ClientUpdate(𝑐, 𝜃𝑡 ): // Run on client 𝑐
for each local update 𝑖 from 1 to 𝐵 do
𝜃𝑐
𝑡+1 ← 𝜃𝑡 + 𝜂∇𝑓 𝑐𝜃𝑡 //PDGD update shown in Algorithm. 2

return (𝜃𝑐
𝑡+1, 𝑛𝑐 ) to server

Algorithm 2 Pairwise Differentiable Gradient Descent(PDGD) [31]
1: Input: initial weights: 𝜃1; scoring function: 𝑓 ; learning rate 𝜂.
2: for 𝑡 ← 1, . . . 𝐵 do
3: 𝑞𝑡 ← receive_query(𝑡) // obtain a query from a user
4: 𝐷𝑡 ← preselect_documents(𝑞𝑡 ) // preselect documents for query
5: R𝑡 ← sample_list (𝑓𝜃𝑡 , 𝐷𝑡 ) // sample list
6: c𝑡 ← receive_clicks(R𝑡 ) // show result list to the user
7: ∇𝑓𝜃𝑡 ← 0 // initialize gradient
8: for 𝑑𝑘 >c 𝑑𝑙 ∈ c𝑡 do
9: 𝑤 ← 𝜌 (𝑑𝑘 , 𝑑𝑙 , 𝑅, 𝐷) // initialize pair weight

10: 𝑤 ← 𝑤 𝑒
𝑓𝜃𝑡
(d𝑘 )𝑒 𝑓𝜃𝑡 (d𝑙 )

(𝑒 𝑓𝜃𝑡 (d𝑘 )+𝑒 𝑓𝜃𝑡 (d𝑙 ) )2
// pair gradient

11: ∇𝑓𝜃𝑡 ← ∇𝑓𝜃𝑡 +𝑤 (𝑓 ′𝜃𝑡 (d𝑘 ) − 𝑓 ′
𝜃𝑡
(d𝑙 )) // model gradient

12: 𝜃𝑡+1 ← 𝜃𝑡 + 𝜂∇𝑓𝜃𝑡 // update the ranking model

according to the server routine in Algorithm 1. The new global
model is then distributed to the user’s device ( 7 ).

4 TYPES OF NON-IID DATA IN FOLTR
We consider training a ranker for the OLTR system as a supervised
learning task in an FL setup, with each client holding a subset of the
data. Each data sample is denoted as (𝑥,𝑦), where 𝑥 is the feature
representation of the data and 𝑦 is the label. The local distribution
of the dataset in client 𝑖 is denoted as 𝑃𝑖 (𝑥,𝑦). The presence of non-
IID data can be represented as the difference between local data
distributions: that is, for different clients 𝑖 and 𝑗 , 𝑃𝑖 (𝑥,𝑦) ≠ 𝑃 𝑗 (𝑥,𝑦).

In federated learning, data across clients may not be IID due to
different reasons: Kairouz et al. [20] and Zhu et al. [53] assert this
can be due to how features 𝑥 and labels 𝑦 are distributed. However,
the translation of these categories to FOLTR is not straightforward.
In the following sections, we put forward several situations inwhich
data specific to FOLTR could be distributed in a non-IID manner
across clients. Specifically, we consider data in the FOLTR process
may not be IID because of biases across clients due to:
• Type 1: document preferences (Section 5)
• Type 2: document label distribution skewness (Section 6)
• Type 3: click preferences (Section 7)
• Type 4: data quantity (Section 7)



The last data type, Type 4, i.e., the situation in which different
clients hold different quantities of data (and in particular interaction
data such as queries and clicks), does not necessarily imply that the
data is non-IID. However, we note this case is often studied in the FL
literature alongside non-IID data [24, 53], and thus we include this
situation in our considerations of the non-IID problem. Each data
type is defined and investigated in the next sections; in addition we
provide a summary overview of the data types in Table 1.

We also note that commonly in federated learning, non-IID data
occurs because the data is distributed across clients according to
its features. In other words, the marginal distribution of the fea-
tures belonging to the data held by each client may vary, i.e. for
different clients 𝑖 and 𝑗 , 𝑃𝑖 (𝑥) ≠ 𝑃 𝑗 (𝑥). This situation may occur
in horizontal federated learning settings (also called homogeneous
FL) [47], where each client holds different and overlapping datasets.
In this case, the non-IID divergence is usually caused by inconsis-
tent data distributions, e.g., feature imbalance of the training data
local to each client. However, this case does not seem applicable to
FOLTR (thus is not further studied in this paper). In FOLTR, each
data item is represented by the feature vector of a query-document
pair and its relevance label. The features often consist of varia-
tions of query-dependent features such as TF-IDF scores, BM25
scores, query length, as well as query-independent features such
as PageRank, URL lengths, and so on [34]. In this case, bias in the
feature distribution across clients would be rare as most features
are dependent on the query-document pair.

Next, we describe the non-IID data types we put forward in
this paper and analyse their impact on FOLTR. We empirically
find that only Type 1 and partially also Type 2 data have a strong
impact on the FOLTR. We thus predominantly focus our attention
on these two data types while providing only a definition and a
brief account of the remaining two data types in the paper due to
space: we do, however, report all experiments results, thorough
analysis and considerations in an online appendix available at https:
//github.com/ielab/2022-SIGIR-noniid-foltr.

5 TYPE 1: DOCUMENT PREFERENCES
Document preference skewness (Type 1) considers the situation when
the conditional distribution 𝑃𝑖 (𝑦 |𝑥) varies across the clients though
𝑃𝑖 (𝑥) remains the same. This happens when different clients have
different preferred candidate documents, although they are search-
ing for the same query. As OLTR requires the user’s implicit feed-
back as an optimization objective, which might be highly related
to individual preferences, this setting appears to be of very likely
occurrence.

5.1 Simulating Type 1 non-IID Data
The mechanism we use to simulate non-IID data of Type 1 and IID
data to baseline the FOLTR effectiveness relies on a recent work
that empirically studied and demonstrated how OLTR methods
adapt when user’s search intents change overtime [55]. In partic-
ular, Zhuang and Zuccon [55] created a collection for OLTR with
several explicit intent types by adapting an existing TREC collec-
tion, as no dataset is available for studying this OLTR problem.
Derived from ClueWeb09 and the TRECWeb Track 2009 to 2012 [8],
this intent change collection consists of 200 queries with 4 intents

each and, on average, 512 candidate documents per query. Further-
more, query-document pairs’ relevance judgements are provided
per intent. We believe this is an appropriate collection to adapt to
study the effect of Type 1 non-IID data on FOLTR. We can regard
each intent as a type of user preference. As the average number
of relevant documents per intent varies largely across all intent
types, the learning difficulty of optimizing a ranker among dif-
ferent intents also varies. To avoid this bias, we follow Zhuang
and Zuccon [55] and we re-label the original intent number for
each query through random shuffling: this is possible because all
intent types are independent across queries. In our experiments,
we repeat this process of re-balancing 5 times, thus giving rise to
results averaged across 5 FOLTR experiments. We refer to Zhuang
and Zuccon [55] for further details on the dataset creation, and we
further highlight that we have made available an implementation
of the dataset creation procedure along with the actual dataset at
https://github.com/ielab/2022-SIGIR-noniid-foltr.

To simulate non-IID data, after randomly shuffling all intents
across 4 types, we let each intent represent one client preference.
The client preferences differ from each other for the same query-
document pair so as the corresponding relevance judgements. The
federated setup involves 4 clients (represented by 4 types of intent)
and the local updating time 𝐵 = 5 with fixed global communica-
tion times 𝑇 = 10, 000. These settings are similar to those used in
previous work on FOLTR [21, 43, 44] – in particular we refer the
interested reader to the work of Wang et al. [44] to understand the
relationships between number of clients, number of local updates
𝐵, and FOLTR effectiveness. For the implicit feedback in FOLTR,
we simulate user clicks based on the popular Simplified Dynamic
Bayesian Network (SDBN) click mode [7], following settings in pre-
vious work on OLTR [31, 33, 43, 54]. We limit SERP to 10 documents
and use 𝑛𝐷𝐶𝐺@10 for offline evaluation, cumulative discounted
𝑛𝐷𝐶𝐺@10 [31] for online evaluation. We train a linear ranker and
a neural ranker on the intent-change dataset. As in Zhuang and
Zuccon [55], given that no held-out test set is available, we evaluate
both online and offline performance on the original training set
across all 4 intent types and average all results. For the IID setting,
we merge all intents and mark a document as relevant as long as it
is judged relevant for at least one of the intent types. Each client
randomly picks a query from the training set and clicks documents
based on the same preferences during the federated training with
IID data. Other settings remain the same as the non-IID experi-
ments.

5.2 Impact of Type 1 non-IID Data
The offline performance related to Type 1 data is shown in Figure 3;
the corresponding online performance is shown in Table 2. From
the offline performance, it is clear that the presence of non-IID data
negatively impacts the performance of the learnt ranker, compared
to those obtained when data is IID. In terms of online performance,
rankers obtained in the presence of non-IID data are also worse
than when trained with IID data. This can be explained as follows.
Since each client has its preference (intent), the relevant documents
are judged in different ways; this leads to the divergence of each
client’s local ranker update, as exemplified in Figure 1.

https://github.com/ielab/2022-SIGIR-noniid-foltr
https://github.com/ielab/2022-SIGIR-noniid-foltr
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Table 1: Summary of non-IID data types in FOLTR.

Data type Key characteristic When it happens in FOLTR

Type 1 Document Preferences Different clients have different preferred candidate documents, although they are
searching for the same query.

Type 2 Document Label Distribution Different clients hold candidate documents with different label distribution while
the conditional feature distirbution is the shared.

Type 3 Click Preferences Different clients have various preferred click behaviours when searching for the
same query.

Type 4 Data Quantity Different clients have different frequency on issuing queries and interacting with
the searching system.

Figure 3: Offline performance (nDCG@10) on Type 1 data; results averaged across dataset splits and experimental runs.

Table 2: Online performance on Type 1 data, averaged across
dataset splits and experimental runs. Significant differences
between IID and non-IID are indicated by ▲ (p < 0.05)

ranker data types perfect navigational informational
linear IID 1002.36 ▲ 872.12 ▲ 894.95 ▲

non-IID 648.71 546.25 566.23
neural IID 1061.57 ▲ 834.08 ▲ 842.87 ▲

non-IID 668.38 505.64 490.29

In summary, we find that if data is distributed in a non-IID
manner across clients according to Type 1, the effectiveness of
FOLTR (and specifically of FPDGD) is seriously affected.

5.3 Dealing with Type 1 non-IID Data
The employed state-of-the-art FPDGD method is based on the Fe-
dAvg algorithm. The fact that FPDGD is affected by non-IID data
may be due to the underlying federation algorithm, i.e. FedAvg
itself. In federated learning literature, variations of this federation
algorithm have been proposed to tackle the non-IID data problem di-
rectly. We select two of such methods, FedProx [25] and FedPer [1],
and adapt them to the FPDGD method.

FedProx [25] improves the local objective of FedAvg. Specifi-
cally, it introduces an additional 𝐿2 regularisation term (weighted
according to a hyper-parameter 𝜇) in the local objective function
to limit the distance between the local model and the global model.
We provide details of our adaptation of FedProx to FPDGD in the
online appendix; the use of FedProx adds little computational over-
head. However, the main drawback is that the hyper-parameter 𝜇
needs to be carefully tuned: a large 𝜇 may slow the convergence by

forcing the updates to get close to the initial point, while a small 𝜇
may not make much difference compared to the use of FedAvg.

FedPer [1] tackles the presence of non-IID exclusively for deep
neural networks by separating them into base layers and personali-
sation layers. The base layers are trained collaboratively through
FedAvg, where all clients share the same base layers. Instead, the
personalisation layers are trained locally using the clients’ local
data with stochastic gradient descent (SGD). This procedure works
as follows: after initialisation, each client merges and updates its
base and personalised layers locally using an SGD style algorithm.
Each client only sends its base layers to the global server. The server
updates the globally-shared base layers using FedAvg and sends
back again the updated ones to each client. Intuitively, the base
layers are updated globally to learn common high-level represen-
tations. In contrast, the distinct personalisation layers never leave
the local device and capture the personalisation aspects required
by the clients. Except for the training and the maintenance of the
local personalisation layers, FedPer is quite similar to FedAvg. Fed-
Per, however, reduces the communication costs as only part of
the whole model is transferred and has shown enhanced learning
performance under highly skewed non-IID data [1].

Our experimental results on FedProx and FedPer are shown in
Figure 4; for FedProx we explored 𝜇 ∈ {0.001, 0.01, 0.1, 1, 10}. The
results clearly show that these federated learning methods, which
successfully deal with non-IID data in general machine learning
tasks, are not effective in the FOLTR context. In fact, not only
do these methods not overcome the gap in effectiveness between
IID and non-IID setups, but they even only provide limited im-
provements, if any, compared to FPDGD with FedAvg. This is an
important finding because: (1) it shows a realistic case in which non-
IID data largely affects FOLTR effectiveness, and (2) it shows that
current methods developed in general FL for non-IID data do not



(a) intent-change (linear ranker) - FedProx

(b) intent-change (neural ranker) - FedProx

(c) intent-change (neural ranker) - FedPer

Figure 4: Offline performance on Type 1 data for FedProx and FedPer; results averaged across dataset splits and experimental
runs.

work in FOLTR. Thus, a strong need for new methods specialised
in the FOLTR settings emerges from these findings.

6 TYPE 2: DOCUMENT LABEL DISTRIBUTION
SKEWNESS

Document label distribution skewness (Type 2) is a widely recognised
type of non-IID data type in federated learning. In this setting,
the label distributions 𝑃𝑖 (𝑦) in each client are different while the
conditional feature distribution 𝑃𝑖 (𝑥 |𝑦) is shared across the clients.
In terms of FOLTR, this is equivalent to the following situation.
Assume a document is evaluated across the 𝑟 -level relevance grades,
from not relevant (0) to perfectly relevant (𝑟 − 1); then the label
distribution on each client is such that, for client 𝑖 , the probability
of holding documents with relevance label 𝑘 is 𝑃𝑖 (𝑅 = 𝑘) = 𝑝𝑘 ,
where

∑𝑟−1
𝑘=0 𝑝𝑘 = 1, ∀𝑘, 𝑝𝑘 ∈ [0, 1]

In practice, this may be represented by a situation like the follow-
ing. Several hospitals are collaboratively creating a FOLTR ranker

for clinical-decision-support [35, 36]. Certain hospitals hold a signif-
icantly larger portion of highly relevant health records for a certain
disease, while some only a small fraction. In this circumstance, the
document label distribution is skewed. Under the context of email
search [30], different clients might have unique strategies for man-
aging personal emails [46]. Some clients frequently clean up their
inboxes and use folders to organise emails. In contrast, some hardly
use folders or delete irrelevant messages, resulting in different label
distribution when following a learning-to-rank approach.

6.1 Simulating Type 2 non-IID Data
In this section, we discuss how we synthetically simulate Type 2
non-IID data and IID data to baseline in the FOLTR effectiveness. For
these experiments, we use the popular datasets MSLR-WEB10k [34]
(10,000 queries), Yahoo [6] (29,900 queries) and Istella-S [27] (33,018
queries). We report the results for MSLR-WEB10k in the paper;
results on the other datasets are similar and are provided in the on-
line appendix. We simulate |𝐶 | clients with each client performing



(a) MSLR-WEB10k (linear ranker)

(b) MSLR-WEB10k (neural ranker)

Figure 5: Offline performance (nDCG@10) on MSLR-WEB10k for Type 2 (#𝑅 = 1), under three instantiations of SDBN click
model and three local updates setting (𝐵 ∈ {2, 5, 10}); results averaged across all dataset splits and experimental runs.

(a) MSLR-WEB10k (linear ranker)

(b) MSLR-WEB10k (neural ranker)

Figure 6: Offline performance (nDCG@10) on MSLR-WEB10k for Type 2 (#𝑅 = 2), under three instantiations of SDBN click
model with local updates setting (𝐵 = 5); results averaged across all dataset splits and experimental runs.

𝐵 interactions (queries) locally to contribute to each global model
update and restrict the global communication times 𝑇 = 10, 000.
For simulating querying behaviour, for each client participating in
the federated OLTR, we sample 𝐵 queries randomly, in line with

previous work on FOLTR [21, 43]. For each query, we use the local
ranking model (i.e. that held by the client) to rank documents; we
limit SERP to 10 documents. For the click behaviour, we rely on the



Table 3: Online performance on MSLR-WEB10k for Type 2
(#𝑅 = 1), averaged across dataset splits and runs.

linear ranker neural ranker

click 𝐵 = 2 𝐵 = 5 𝐵 = 10 𝐵 = 2 𝐵 = 5 𝐵 = 10
IID per. 742.10 778.56 798.05 716.55 781.18 815.8

nav. 698.25 743.35 771.04 649.83 728.96 775.87
inf. 672.23 722.23 757.10 612.76 693.35 748.64

non-IID per. 1589.23 1589.23 1589.23 1589.23 1589.23 1589.23
nav. 1589.23 1589.23 1589.23 1589.23 1589.23 1589.23
inf. 1589.23 1589.23 1589.23 1589.23 1589.23 1589.23

same SDBN click models as Section 5. We train both a linear ranker
and a neural ranker same as Wang et al. [43].

We specifically consider two types of non-IID data for Type 2:
non-IID subtype 1 and non-IID subtype 2. The main difference be-
tween the two types is the number of different labels (i.e. the graded
relevance assessments) in each client’s local dataset. Following sim-
ilar partitioning strategies by Li et al. [24], suppose each client
only has data samples for 𝑘 different labels. We first generate all
possible 𝑘-combinations of the relevance set 𝑅 and randomly assign
to

(𝑅
𝑘

)
clients. Then, for the query-document pairs of each label, we

randomly and equally divide them into the clients who own the
label. In this way, the number of labels in each client is fixed, and
there is no overlap between the samples of different clients.

In non-IID subtype 1, each client only holds query-document
pairs from one specific value of relevance label. We use #𝑅 = 1
to denote this partitioning strategy. This federated setup involves
|𝐶 | = 5 clients. We also vary the local updating time 𝐵 ∈ {2, 5, 10} to
investigate the impact of local updating with a fixed global commu-
nication time 𝑇 = 10, 000. For non-IID subtype 2, each client holds
data samples from two relevance labels – we denote this as #𝑅 = 2.
We simulate |𝐶 | = 10 clients and for fair comparison between the
two non-IID subtypes, we also simulate |𝐶 | = 10 clients for #𝑅 = 1
(with each label distributed on two different clients).

The IID experimental setting is the same as the non-IID in terms
of federation, ranker parameters and evaluation procedure, except
that each client now randomly picks a query from the whole train-
ing set with all graded judgements during the training period.

6.2 Impact of Type 2 non-IID Data
The offline performance for #𝑅 = 1 on MSLR-WEB10k is shown in
Figure 5 and the corresponding online performance is shown in Ta-
ble 3. From the offline results, it is clear that the rankers learnedwith
non-IID data under-fit the generalized held-out test set under all
three settings of local updating times (𝐵). For the perfect click model,
a larger number of 𝐵 achieves better test performance. However,
when it comes to noisier clicks (navigational or informational), the
trend is reversed, although differences are minimal and the model
performance fluctuates. For the online results, all non-IID settings
appear to over-fit the maximum value (𝑜𝑛𝑙𝑖𝑛𝑒_𝑛𝑑𝑐𝑔 = 1589.23) as
each client’s local data only contains data from one relevance label.

Offline results for #𝑅 = 2 are shown in Figure 6. In this case,
the effectiveness of the learnt rankers is much higher than for
#𝑅 = 1: a diversity in labels held by a client prevents major losses
in FOLTR effectiveness. This result is also consistent with previous
results in general federated learning with non-IID data: Li et al. [24]
found that the most challenging setting is when each client only
has data samples from a single class (label). We further note that
another reason for the performance gap is the pairwise loss used

in FPDGD [43]: when each client only has one relevance label, it
is hard to infer preferences between document pairs (as they both
have the same label). However, given labels from two levels of rel-
evance (#𝑅 = 2), pairwise differences can be effectively inferred.
This suggests that the results obtained here for Type 2 data may
not generalise to other FOLTR methods beyond FPDGD if they do
not rely on the pairwise preference mechanism. We further note,
however, that FPDGD is the current state-of-the-art method and
that the only available alternative [21] displays highly variable and
sensibly worse performance compared to FPDGD [44, 45]. There-
fore, new methods of FOLTR must also be validated in the presence
of Type 2 data.

In summary, we find that if data is distributed in a non-IID
manner across clients according to Type 2, the effectiveness of
FOLTR (and specifically of FPDGD) is seriously affected in the case
of #𝑅 = 1; however, if #𝑅 = 2 then gaps in effectiveness compared
to IID settings are minimal.

6.3 Dealing with Type 2 non-IID Data
Tomitigate the effect of Type 2 non-IID data, we investigate three ex-
isting methods from the federated learning literature: Data-sharing,
FedProx and FedPer. FedProx and FedPer have been described in
Section 5.3. Data-sharing was first proposed by Zhao et al. [52].
They attribute the performance reduction observed on non-IID
data to the weight divergence, which is further affected by the
divergence between the local data distribution and the overall dis-
tribution. They then introduce a straightforward idea to improve
FedAvg: slightly reduce the divergence that causes the global model
to underperform. This can be achieved as follows. A globally shared
dataset𝐺 characterised by the overall data distribution is centralised
on the server, and a warm-up global model is trained from𝐺 . Then,
a random 𝛼 proportion of𝐺 is sent to all clients to update the local
model by both local training data and the shared data from𝐺 . Lastly,
the server aggregates the local models from the clients and updates
the global model with FedAvg. Experimental results on machine
learning tasks show that data sharing can significantly enhance the
global model performance in the presence of non-IID data. How-
ever, the shortcomings are also pronounced. It is challenging to
collect uniformly distributed global datasets in real-world scenarios
because either the global server needs some prior knowledge about
the local data distributions or each client needs to share parts of
the local data (violating the privacy requirement underlying FL).

Figure 7 reports the results for Data-sharing, FedProx and FedPer
on MSLR-10k dataset under label distribution skewness #𝑅 = 1. We
randomly select 10% of the entire dataset as the globally shared
data and simulate |𝐶 | = 5 clients with 𝐵 = 5 local updates before
each global update. Results show that the global performance can
be significantly enhanced with data-sharing for both linear and
neural rankers. On the other hand, neither FedProx nor FedPer
provides statistically significant gains over the basic FPDGD on
Type 2 non-IID data (with #𝑅 = 1).

7 OTHER DATA TYPES
7.1 Type 3: Click Preferences
Next, we consider as a source of non-IID data the noise and biases
caused by the different click preferences arising from different



(a) MSLR-WEB10k (linear ranker)

(b) MSLR-WEB10k (neural ranker) - data sharing

(c) MSLR-WEB10k (neural ranker) - FedProx & FedPer

Figure 7: Offline performance on MSLR-10k when using Data-sharing, FedProx and FedPer on Type 2 non-IID data (with
#𝑅 = 1); results averaged across dataset splits and experimental runs.

clients that participate in the FOLTR training; we term this type of
non-IID data as click preference skewness (Type 3).

The mechanism to emulate non-IID data of Type 3 and IID data
baseline in our FOLTR experiments is as follows. We study two
widely used click models: the Simplified Dynamic Bayesian Network
(SDBN) click model [7] and the Position-Based Model (PBM) [10].
For non-IID settings in SDBN, each client chooses one of three
widely-used instantiations of SDBN, namely perfect, navigational,
informational. For the non-IID settings with PBM, we generate 5
instantiations based on varying the 𝜂 ∈ {0, 0.5, 1, 1.5, 2} parameter:
each client is represented by one click type. Thus the federated
setup involves 3 clients for SDBN clicks and 5 for PBM. We set the
local updating time 𝐵 = 5 with fixed global communication times
𝑇 = 10, 000. In the IID setting, at every time, each client is simulated
based on a click model randomly picked from all click models
instantiations detailed above and used in the non-IID setting; this
provides a fair comparison between the IID and non-IID settings.
We experiment on MSLR-WEB10k, Yahoo and Istella-S.

For both online and offline performance, and all datasets, our
experimental results show that the difference between non-IID and
IID data for Type 3 is not significant; for further details we refer
the reader to the Appendix in this paper and the online appendix.

7.2 Type 4: Data Quantity
Finally, we consider the case of data quantity skewness (Type 4);
this occurs when the number of training data varies across different
clients. It is a common scenario in real-world applications. For
example, in FOLTR, some clients tend to issue more queries and
interact more with the searching system than others. Thus, they
have more data for training than others. The situation represented
by Type 4 may occur in combination with the other data types. In
our empirical experiments, we have studied Type 4 data both on its
own and combined with the document preferences skew (Type 1)
and the document label distribution skew with #𝑅 = 1 (Type 2).

Type 4 data is simulated by assigning different numbers of
queries (𝑄) to each client during the same local updating period,
thus leading to different local updating times for each client. The



number of queries varies in {1, 3, 5, 7, 9} and we simulate |𝐶 | = 5
clients in total with fixed global communication times 𝑇 = 10, 000.
Experiments are carried out on MSLR-WEB10k, Yahoo and Istella-S.

When mixing other non-IID types with Type 4, we follow the
same experimental settings of previous non-IID types, and we also
assign different numbers of queries to each client (from {1, 3, 5,
7, 9}) during the same local updating period. Instead, in the IID
simulation, each client has 5 iterations of searching for different
queries. For both IID and non-IID, we use SDBN click models for
click simulation and train a linear ranker using FPDGD on MSLR-
WEB10k for Type 1 with #𝑅 = 1, and the dataset from Zhuang and
Zuccon [55] for Type 2.

Empirical results3 show that if data is distributed in a non-IID
manner across clients according to Type 4, the effectiveness of
FPDGD is not impacted. We stress that this result may be specific
to FPDGD because it uses the FedAvg paradigm and does not gen-
eralise to other FOLTR methods.

8 OUTLOOK AND DISCUSSION
In this paper, we provide a new perspective on the problem of data
distribution across clients for federated online learning to rank.
Next, we summarise the our key findings and draw directions for
future research.

Impact of non-IID data.We found that the presence of non-IID
characteristics in the distribution of document preferences (Type 1)
and specific cases of document labels (Type 2) have severe effects on
the effectiveness of FPDGD. Conversely, if data is distributed across
clients in a non-IID manner concerning click preferences (Type 3)
or data quantity (Type 4), no significant effects on the quality of
FPDGD are observed. These findings contribute an understanding
of under which data distributions it is safe to use FOLTR and when
it is not. We believe this paper will encourage researchers to include
non-IID data settings when evaluating new FOLTR methods.

Calling for FOLTRmethods to address non-IID issues.Our
paper charts directions to direct future work on non-IID data in
FOLTR concerning the creation of techniques that provide remedies
to Type 1 and 2, while deeming solutions for Type 3 and 4 data less
critical. Importantly, we show that existing solutions employed in
general federated learning to mitigate the non-IID data problem do
not apply to the FOLTR setting, despite some of these non-IID cases
(and especially Type 1) being likely to occur across many FOLTR
systems. Thus, researching how to address non-IID data in FOLTR
is a worthwhile area of investigation.

Privacy should be a high priority when dealing with non-
IID data. Our analysis found that only the data-sharing technique
could address to significant extents Type 2 non-IID data. However,
this and similar methods, although performing well, require the
prior knowledge about the users’ local data distributions – and thus
require users to share private data, largely defeating the purpose
of federated learning. We note that recent work has considered
the sharing of synthetic, rather than real, data [41]. In such a set-
ting, real data would be used by each client to generate synthetic
data, and the synthetic data only would be shared in the federation.
However, we could not find evidence of the loss in effectiveness
associated with the use of synthetic rather than real data in the

3In the Appendix in this paper and in the online appendix.

data-sharing scheme. Furthermore, it is unclear what the privacy
guarantees are in such a synthetic data sharing scheme. Specifi-
cally, we wonder whether the use of synthetic data could jeopardise
privacy as this synthetic data is generated from the real data: thus
analysis of the synthetic data may reveal key aspects of and infor-
mation contained in the real data. Thus, how to guarantee user’s
privacy needs when designing effective FOLTR algorithms on non-
IID data is still an open question.

Real-world datasets and benchmarks for FOLTRwithnon-
IIDdata are need.The experiments put forward in this perspective
paper to substantiate our views on the non-IID data problem in
FOLTR are based on simulations. While simulations are prevalent in
information retrieval and especially in its evaluation [2, 3, 9, 28, 51],
a key aspect we had to simulate was the nature of the non-IID
data, including their distributions. On one hand, this allows us to
carefully control the experiments; on the other it limits the gener-
alisability of the findings to real non-IID data that may occur in
FOLTR settings. We therefore want to conclude with a call for ac-
tion for information retrieval practitioners in this area: there is the
pressing need for FOLTR benchmark datasets that provide standard
simulations on real-world non-IID scenarios as well as standard
hyper-parameter settings so that future FOLTR algorithms can be
fairly studied.

9 CONCLUSION
The goal of FOLTR is to learn an effective ranker in a federated
(without the need for searchable and interaction data to reside on
a central server) and online (by exploiting users clicks on SERPs
as they occur) manner. In such a FOLTR setup, user data and in-
teractions reside with the user’s client, and not in a central server.
Clients then do not need to share such data. Instead, they only
share ranker updates with a central server whose responsibility is
to collect such updates from the clients and aggregate them into a
global model. The global model is then pushed back to the clients
in an iterative manner as search interactions occur.

Despite federated learning receiving substantial attention, re-
search in FOLTR is still in its early stages, with only two methods
available at the time of writing [21, 43]. Importantly, studies that
have proposed FOLTR methods have ignored an important issue
that has been shown to affect the performance of federated learning
systems [53]: that of the data not being distributed across the feder-
ated clients in an identical and independent manner (non-IID data).
This paper provides the first analysis of the impact of non-IID data
on FOLTR and it charts directions for future research. Our findings
and observations may be valid also in other contexts that consider
to create a ranker from interaction data in a federated manner, e.g.,
in federated counterfactual leaning to rank [23].

Wemake code, experimental details and results available at https:
//github.com/ielab/2022-SIGIR-noniid-foltr.
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APPENDIX
Table 4 reports the values of the parameters of the SDBN click
models we used in the experiments.

Figure 8 reports the results of our experiments for non-IID data
type 3: click preferences.

Figure 9 reports the results of our experiments for non-IID data
type 4: data quantity.

For both type 3 and type 4 data experiments, as well as for other
data types, the interested reader can find additional analysis and
figures in the online appendix.



(a) MSLR-WEB10k (linear ranker)

(b) intent-change (linear ranker) mixed with type 1

(c) MSLR-WEB10k (linear ranker) mixed with type 2 (#𝑅 = 1)

Figure 9: Offline performance (nDCG@10) on MSLR-WEB10k and intent-change for Type 4, under three instantiations of
SDBN click model; results averaged across all dataset splits and experimental runs.
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