
Building Economic Models of
Human-Computer Interaction

Part IV

by @leifos and @guidozuc

BUILDING A MODEL

Building a Model

• 1. Get a precise definition of the problem,
and all relevant data about it
– Identify the factors and variable that may affect

the system
• Uncontrollable factors – these are environmental and

not under direct control
• Controllable factors – these can be controlled by the

system and/or user
– What factors are stochastic i.e. probabilistic?

Murty (2003)
4

Building a Model

• Assume there is some agent, who makes
choices to advance their objectives.
– They make choices under constraints.

• So, who are these agents/people, and
– what are they trying to achieve

(maximize/minimize)?
• What constraints are they under?
– Time, money, knowledge, skills?

• What interactions are available?
– And how can they interact with the system?

Adapted from Varian (1994)
5

Building a Model

• What benefit do they receive from the
choices/interactions they make?

• What costs do they incur from the
choices/interaction they make?

• Draw/sketch out what the process is that the
person/agent undertakes.

• Consider how the variables/actions relate
together.

Adapted from Varian (1994)
6

Building a Model

• 2. Construct a mathematical model of the
problem
– i.e. define the objective function that needs to be

minimized or maximized
– Usually real world problems are very complicated

– so make a simplified version by
• Making assumptions
• Using heuristics
• And taking approximations.

Murty (2003)
7

Building a Model

• 3. Solve the model
– This could be done:
• analytically i.e. mathematically
• graphically i.e. plotting out the functions
• via simulation especially if there are stochastic variables

• 4. Implement the model
– Put it into practice
– Draw hypotheses from the model

Murty (2003)
8

COMPUTATIONAL EXAMPLE

Computational Approach

• Fix a number of parameters, and then varying
one parameter over a range of values

• Plot how the search behavior (outputs)
changes in response to the changes in the
parameter.

• If some variables are stochastic, then a
simulation can be performed, where the
computations repeated for different roles of
the dice.

10

Patches Example II

• Under IFT, the forager wants to maximize the
amount of gain per unit of time.
– i.e.

• Let’s assume that we know:
– The time a forager spends per query (say tq)
– The time a forager spends time per document (say td)

11

Patches Example II

• We know that the total time spent after
examining i documents is:
– the query time (tq) plus the number of documents

examined (i) multiplied by the document time (td)

12

Patches Example II

• Next we need to work out the gain received
from each document assessed.

• Each document examined yields a certain
amount of gain
– Hmm… how much?

13

Patches Example II

• No idea, so lets play and make something up!
– Lets say that the 1st document gives 4 pieces of

information, the 2nd document gives 3 pieces,
then 2, 3, 1, 1, 0, 0 for the subsequent documents.

– So the gain of document k is:

– Note that we could of ran a query and got the gain
values, or used a function to model the gain.

k 1 2 3 4 5 6 7 8
g(dk) 4 3 2 3 1 1 0 0

14

Patch Example II

b/w within
time

ga
in

• The slope of the line can be calculated using
the formula above

• When the slope of the line is the greatest,
then the gain per unit of time is maximized.

(t0,g0)

(ti,gi)

15

Patch Example II

• The time at i is the query time (tq) plus the
number of documents examined (i) times the
average time to examine a document (td)

• The total gain at i is the sum of the gain of all
the docs:

16

Patch Example II

• Let tq = 3 and td=1

• The optimal stopping point is at i=4
– Recall that this assumes that all the patches have

a similar distribution of gain.

k 1 2 3 4 5 6 7 8
g(dk) 4 3 2 3 1 1 0 0
g@i 4 7 9 12 13 15 15 15
t@i 4 5 6 7 8 9 10 11
g/t 1 1.4 1.5 1.7 1.6 1.5 1.4 1.3

17

ANALYTICAL EXAMPLE

An Example Gain Function

g = k.(t� c)�
t > c

0  �  1

• t – time spent looking at results.
• g – gain received from the results.
• c – cost of the query, cost per document is 1.
• beta and k– free parameters controlling the how much

and how fast gain is encountered.
• The graphs in the previous slides used k=1,c=2,b=0.5

19

Patch Example III

• To compute the stopping point, we need to
construct a tangent line from the origin to the
gain curve.
– Take the first derivative of g(t) to get the slope of

the line, and let that equal g over t.

– Recall that the slope of a line is m = (y1-y0)/(x1-x0),
where m is the gradient, y0=0 and x0=0

dg

dt
= k.�.(t� c)(b�1) =

g

t

20

• This results in the following criteria:
– The optimal time per patch is:

– And the gain received is:

t =
�c

� � 1

Patch Example III

g = k.
� ��.c

� � 1

��

21

Static Comparatives

• Fix all variables but one, and see how the
outcome is affected.

• What happens to the time in patch:
– if the cost c of querying goes up/down?
– If the performance beta goes up/down?

22

t =
�c

� � 1

Insights from IFT’s Patch Model

• If the query cost c increases, then users will
spend more time in the patch (i.e. examine
more documents).

• If the rate of gain beta increases, then users
will spend less time in the patch (i.e. examine
less documents).

• If the magnitude of gain k increases, then user
behavior does not change, but they receive
more gain.

23

Summary
• What benefit do they receive from the

choices/interactions they make?
• What costs do they incur from the choices the

choices/interaction they make?
• Now, work through a simple (the simplest)

example possible, so you can see what is going
on.
– i.e. One user, one query…
– How does it generalize to one user, n queries.

• Always remember to make it as simple as
possible (KISS)

Adapted from Varian (1994)
24

Theory is not like a pair of glasses;
it is rather like a pair of guns; it
does not enable one to see better,
but to fight better - Merquior

A Tutorial on Models of Information Seeking, Searching & Retrieval by @leifos & @guidozuc 25

SCENARIOS

Result Page Exercise
• How many result snippets should we show the user per

page?
– Assume the user wants to examine m snippets, where m is

likely to be a number greater than 10
– i.e. we want to set the number of results per page such

that the user’s costs are minimized.
• Hints:
– Draw up a screen to represent the problem
– What are the variables of interest/importance?

• More Hints:
– What are the constraints? What are the main interactions

and interaction costs?
– What if we only showed 1 results per page? Compare that

to 2 results per page? Which one is better?

27

App Search

• On a mobile phone, what is better: to search for
the app or to browse through the apps?

• Goal: Find app x on a phone in the minimum
amount of time.

• What is the optimal number of apps to show per
screen?
– Consider what interactions are associated with

searching and browsing.
– Consider how the time to locate an app on a screen

changes with the number and size of app icons.

28

Extensions to App Search

• Let’s say we swap to a tablet, where the
screen size is larger.
– What is the optimal number of apps to show per

screen, now?
• Let’s say that that we wanted to evaluate a

hierarchy based menu approach for app
search?
– Would this be more efficient?

29

Collaborative Search
• A student and a supervisor are working on a

particular research topic and they need to find
around 30-40 references.
– How should they divide their effort?

• Assume that the student’s time is cheap, and the
supervisor’s time is expensive.

• However, the supervisor’s search prowess is
better than the student’s.

• Who should spend more time searching
– And under what conditions?

30

Mobile Search

• You need to search for some information
while walking around the mean streets of
Melbourne.
– Should you type your query?
– Or use voice and tell your mobile what you want?
– Consider how long it takes to type/talk, and how

easily one can type/talk, and whether the input is
correct or not.

31

