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ABSTRACT
Recent advances in passage retrieval have seen the introduction of
pre-trained language models (PLMs) based neural rankers. While
generally very effective, little attention has been paid to the robust-
ness of these rankers. In this paper, we study the effectiveness of
state-of-the-art PLM rankers in presence of typos in queries, as
an indication of the rankers’ robustness. As of PLM rankers, we
consider the two most promising directions explored in previous
work: dense retrievers vs. sparse retrievers. We find that both types
of rankers are very sensitive to queries with typos. We then apply
an existing augmentation-based typos-aware training technique
with the aim of creating typo-robust dense and sparse retrievers.
We find that this simple technique only works for dense retrievers,
while it hurts effectiveness when used on sparse retrievers.
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1 INTRODUCTION
Recent advances in neural information retrieval have seen the in-
troduction of two divergent paradigms [16]: dense retrieval [8–10,
14, 15, 22, 24, 25, 31–33] and sparse retrieval [1, 4–7, 16, 19, 21, 35].
Dense retrieval refers to the fine-tuning of pre-trained language
models (PLMs) which used to encode text into a dense vector rep-
resentation. These dense vectors are then used for retrieval, by
computing the similarity between a query and the passage encod-
ings. Sparse retrieval refers to the reliance on (traditional) sparse
inverted indexes to perform the retrieval. PLMs are used in the
indexing phase, typically for expanding a document, i.e. adding
additional semantically related unique terms not presented in a
document, or for computing new weights for terms, e.g., increasing
the term frequency of a term in a document.
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While generally very effective, it is unclear if these neural meth-
ods are robust. For example, Sciavolino et al. [28] investigated the
effectiveness of dense retrievers on queries that contain named
entities and showed the methods have a hard time answering these
sort of queries. Wu et al. [30] have examined the robustness of
neural rankers to out-of-distribution data and adversarial attacks,
showing these approaches are less robust than traditional proba-
bilistic ranking models and learning-to-rank methods. Relevant to
our paper is the work by Zhuang and Zuccon [34], who investi-
gated the effectiveness of dense retrievers on queries that contain
typos. Typos affect as high as 26% of queries in modern web search
engines [29]. Zhuang and Zuccon [34] found that the losses in ef-
fectiveness caused by typos in queries are significant for dense
retrievers. To remedy this, they proposed a method based on data
augmentation for dense retrievers, called typos-aware training,
which aimed at reducing the gap in effectiveness observed in dense
retrievers when dealing with queries with typos, as opposed to
queries that do not contain typos. Empirically, they demonstrated
this new training method made the dense retrievers more robust
to typos in queries. Importantly, however, their study was limited
to dense retrievers trained with a standard BM25 hard negative
sampling approach, thus it is unclear if this simple approach can
be adapted to more advanced dense retriever training algorithms,
or to sparse retrievers.

In this paper, we investigatewhether sparse retrievers also present
significant effectiveness gaps when faced with queries with typos,
and whether these gaps are higher or lower than in dense retrievers.
In addition, we also test whether the typos-aware training method,
first proposed for and evaluated on dense retrievers, also gener-
alises to sparse retrievers and more recent state-of-the-art dense
retrievers that use more complex hard negative sampling strategies
and pre-training. For this, we perform experiments considering
a wide array of typos that could occur in English queries and we
compare dense retrievers and sparse retrievers.

Code for reproducing the results presented in this paper can be
found at https://github.com/ielab/typo-comparative-study

2 METHODOLOGY
2.1 Research Questions
There is no large-scale dataset that has enough queries with typos
and associated labelled passages to allow us to train and evaluate
retrieval models. Hence, we adopt the synthetic typo query gen-
eration framework by Zhuang and Zuccon [34]. We briefly detail
these methods this method in Sections 2.2 and 2.3.

We design our experiments to answer the research questions:

• RQ1: Are current state-of-the-art sparse and dense retrievers
robust to queries with typos? How do sparse retrievers compare
in this respect to dense retrievers?

https://doi.org/10.1145/3572960.3572981
https://doi.org/10.1145/3572960.3572981
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• RQ2: Do the improvements provided by typos-aware training
on dense retrievers for queries with typos generalise to sparse
retrievers and recent, advanced dense retrievers? Do models
obtained with typos-aware training still retain their effectiveness
on queries without typos?

To answer RQ1, we investigate the robustness of a wide array of
dense and sparse retrievers. For the dense retrievers, we consider
ANCE, DistilBERT-TASB, TCT-ColBERTv2, CoCondenser. For the
sparse retrievers, we consider BM25, docTquery-T5, DeepImpact,
uniCOIL, TILDEv2, SPLADEv2. We provide a description of each
dense and sparse retriever in Sections 2.4 and 2.5.

To answer RQ2, we apply the typos-aware training strategy [34]
to dense and sparse retrievers. Because of the requirement to re-
train the sparse models from scratch for fair comparison, we only
test typos-aware training on TILDEv2, uniCOIL, SPLADEv2 and
CoCondenser1 and then compare the effectiveness of these models
trained with and without typos-aware on queries with and without
typos. While this is a limited set of models, they are advance, highly
performing models. To ensure fairness in comparison, we need that
the training configurations (batch size, learning rate, random hard
negatives, etc.,) are exactly the same for both models with and with-
out typos-aware training. For this, we re-train all the models with
an open-sourced retriever training tollkit Tevatron2 [11]. We then
implement typos-aware training based on the original training code
by Zhuang and Zuccon [34]. For spares models, we use the same
training configuration suggested in the toolkit examples which
are provided by the original authors, and fine-tune a Huggingface
BERT-base-uncased checkpoint from scratch. For CoCondenser,
we use the CoCondenser checkpoint pre-trained on MS MARCO
that is publicly available on Huggingface model hub3 and we only
conduct the two stages of fine-tuning. Due to limitations with the
GPU infrastructure at our institution, we use a batch size of 32
instead of 64 as it was used in the original paper. For typos-aware
training, we set the typo rate for the training queries to 0.5 and the
types of typos are randomly sampled for each training query, as
per original configurations [34].

2.2 Generating Queries with Typos
We follow Zhuang and Zuccon [34] in generating queries with ty-
pos for evaluating dense and sparse retrievers. For this, we create
a query dataset from three existing datasets: MS MARCO passage
ranking dev query set [20], the TREC Deep Learning Track Passage
Retrieval Task 2019 [3] (DL 2019) and DL 2020 [2]. The original
queries in these datasets do not contain typos4. From these, we
generate queries with typos (separately, for each dataset) using five
synthetic but realistic typo-generators: Random character Insertion
(RandInsert), Random character deletion (RandDelete), Random
character substitution (RandSub), Swap neighbour character (Swap-
Neighbour), Swap adjacent keyboard character (SwapAdjacent).
These typo-generators have been designed to imitate real world
typos made by users on English queries submitted to a search en-
gine [12]. Specifically, for each query in each dataset, we generate
1We note that typos-aware training was evaluated for other dense retrievers in previous
work [34].
2https://github.com/texttron/tevatron/tree/main/examples/coCondenser-marco
3Huggingface hub string: Luyu/co-condenser-marco.
4With the exception of a handful of queries in the MS MARCO dev set.

a typo by randomly sampling a typo-generator and also randomly
sampling a word from the query to apply the typo-generator. By
doing this, for each dataset we can obtain a version of the query set
that contains typos. These new sets of queries with typos share the
relevant passages with the corresponding queries without typos.

2.3 Typos-aware Training
For training typo-robust sparse and dense retrievers, we apply the
data augmentation-based typos-aware training proposed by Zhuang
and Zuccon [34]. For this, we maintain the key original training
settings of each model unchanged and only apply the data augmen-
tation from the typos-aware training to the queries used during
training. For this, we use a typo-rate hyperparameter during the
training phase which controls the amount of training queries into
which a typo is injected. Following Zhuang and Zuccon [34], we
set the typo rate to 0.5, i.e. each training query has a 50% chance to
have a typo being injected. Injected typos are uniformly sampled
from the typo generator. Therefore, both queries with and without
typos are used in the model training phase: the goal is to minimize
the training loss so that the model will be robust to different types
of typos. For more details about the typos-aware training, we refer
the readers to the corresponding original paper [34].

2.4 Considered Dense Retrievers
• ANCE [31]: ANCE is a RoBERTa-based [18] dense retriever trained
with dynamic dense index refreshing and hard negative sampling.
ANCE has been widely used as a comparative baseline.

• DistilBERT-TASB [13]: ADistilBERT-based [27]5 dense retriever
trained with ranking knowledge distillation from a large cross-
encoder teachermodel, using a bi-encoder dense retriever student
model.

• TCT-ColBERTv2 [17]: A BERT-based dense retriever trained with
ranking knowledge distillation from both a cross-encoder teacher
model and a ColBERT [15] (a strong multi-vector dense retriever)
teacher model.

• CoCondenser [9]: State-of-the-art dense retriever trained with
two stages of pre-training and two stages of fine-tuning. For the
pre-training phase, the first stage is the Condenser training [8]
where a CLS token enhanced BERT is pre-trained on the masked
language modelling task. The second stage is the corpus aware
pre-training where contrastive loss is used so that the represen-
tations of two sentences from the same passage are trained to
be close to each other. After the pre-training, the two stages of
fine-tuning are conducted on the target task with labelled data.
In the first fine-tuning stage, a strong dense retriever is obtained
for sampling hard negative training instances. Then, in the sec-
ond stage, the final dense retriever model is trained with hard
negatives from the first stage.

2.5 Considered Sparse Retrievers
• BM25 [26]: A classic bag-of-words zero shot sparse retrieval model.
• docTquery-T5 [21]: a T5 language model [23] fine-tuned to gen-
erate relevant queries from the given passage. Specifically, for
each passage, 40 queries are generated and appended to the pas-
sage. Then BM25 is used on the extended passage collection.

5A half-size BERT trained with knowledge distillation on the language modelling task.

https://github.com/texttron/tevatron/tree/main/examples/coCondenser-marco
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Model MS MARCO TREC DL 2019 TREC DL 2020
MRR@10 nDCG@10 MAP nDCG@10 MAP

Sparse

BM25 .187/.095 (-49.3%) .497/.256 (-48.5%) .290/.147 (-49.3%) .487/.291 (-40.2%) .287/.168 (-41.5%)
docTquery-T5 .282/.147 (-47.6%) .634/.339 (-46.4%) .405/.201 (-48.9%) .624/.409 (-34.5%) .417/.266 (-36.3%)
DeepImpact .325/.147 (-54.9%) .694/.398 (-42.8%) .457/.242 (-47.0%) .650/.417 (-35.8%) .426/.268 (-37.1%)
uniCOIL .351/.188 (-46.4%) .703/.395 (-43.8%) .462/.235 (-49.1%) .674/.454 (-32.7%) .444/.279 (-37.2%)
TILDEv2 .337/.181 (-46.2%) .647/.371 (-42.6%) .417/.219 (-47.4%) .653/.437 (-33.1%) .427/.262 (-38.7%)
SPLADEv2 .368/.210 (-43.1%) .728/.464 (-36.3%) .485/.285 (-41.1%) .710/.503 (-29.2%) .488/.322 (-34.0%)

Dense

ANCE .330/.200 (-39.3%) .645/.448 (-30.5%) .371/.247 (-33.4%) .641/.461 (-28.1%) .403/.278 (-31.0%)
DistilBERT-TASB .344/.184 (-46.5%) .721/.441 (-38.8%) .459/.264 (-42.5%) .683/.470 (-31.2%) .468/.303 (-35.1%)
TCT-ColBERTv2 .358/.199 (-44.4%) .720/.449 (-37.6%) .447/.256 (-42.7%) .689/.471 (-31.6%) .475/.302 (-36.4%)
CoCondenser .383/.221 (-42.4%) .715/.461 (-35.5%) .453/.276 (-40.7%) .679/.479 (-29.4%) .479/.315 (-34.2%)

Table 1: The effectiveness of dense vs. sparse retrievers on queries with and without typos (results to be read as: <without/with>). The percentage
of loss (drop rates) between queries without and with typos are reported in brackets. For every method, effectiveness on queries with typos
is statistically significantly lower than for the queries without typos. Other statistically significant comparisons of interest are mentioned
directly in the text write-up.

• DeepImpact [19]: it estimates a contextualized impact score for
each token in a passage using a fine-tuned BERT model. The im-
pact scores are used to substitute the term-weighting scores in the
inverted index so that sparse retrieval can be performed with the
contextualized impact scores. The impact scores of query tokens
are just one-hot vector given by BERT tokenization. DeepImpact
also uses the docTquery-T5 expanded collection.

• uniCOIL [16]: uniCOIL learns impact scores for both query to-
kens and passage tokens using contrastive loss, unlike Deep-
Impact that only predicts impact scores for passage tokens but
also uses learned BERT model to estimate impact scores of query
tokens. uniCOIL also uses the docTquery-T5 expanded collection.

• TILDEv2 [35]: TILDEv2 can be regarded as a combination of the
key characteristics of DeepImpact and uniCOIL, where the query
encoder is just the BERT tokenizer and the passage encoder is
the BERT model fine-tuned with contrastive loss. We note that
the original authors use TILDEv2 as a second stage re-ranker; we
instead convert it into a first stage retriever by using the same
retrieval pipeline as uniCOIL for fair comparison.

• SPLADEv2 [6]: SPLADEv2 is the current state-of-the-art sparse
retriever. It learns impact scores with contrastive loss and knowl-
edge distillation from a cross-encoder teacher. Unlike DeepIm-
pact, TILDEv2 and uniCOIL, it does not rely on docTquery-T5
to expand passages with more tokens but it directly estimates
impact scores for each passage over the entire BERT vocabulary.

2.6 Dataset and evaluation
All models are trained with the MS MARCO passage training data
which consists of around 500k training queries.We evaluate all mod-
els using the 6,980 MS MARCO dev queries, the 43 TREC 2019 Deep
Learning Track queries (TREC DL 2019) [3] and the 54 TREC 2020
Deep Learning Track (TREC DL 2020) queries [2]. For the evalua-
tion of queries with typos, we repeat the synthetic typo-generation
process 10 times for each dataset and report the average scores.
Following official guidelines for the datasets, we use MRR@10 to
evaluate MS MARCO queries, and nDCG@10 and MAP for TREC

DL 2019 and TREC DL 2020 queries. Statistically significant dif-
ferences between methods’ results are detected using a two-tailed
paired t-test with 𝑝 < 0.05 and Bonferroni correction.

3 RESULTS
Table 1 reports the results for RQ1. The effectiveness of all meth-
ods sharply decreases once typos are introduced in the queries:
no matter whether dense or sparse retrievers are used, drops in
effectiveness are substantial and always statistically significant.
Dense retrievers however do appear to have relative losses that
are more modest than those of sparse retrievers. Our hypothesis
is that sparse retrievers exhibit higher relative losses on queries
with typos than dense retrievers because sparse retrievers rely on
exact term matching between query and passage tokens, and a typo
introduces a lexical mismatch (vocabulary mismatch).

We also note that while on queries without typos differences
between certain methods are remarkable, on queries with typos
differences disappear. For example, DeepImpact is more effective
than docTquery-T5 in general (see MRR@10 for MS MARCO re-
sults, for which differences are significant); however when queries
with typos are considered, DeepImpact and docTquery-T5 achieve
the same effectiveness (no statistically significant difference). This
finding is even more consistent for dense retrievers. While in gen-
eral there are significant differences between the effectiveness of
these methods, when queries with typos are considered, the only
significant differences are found for the CoCondenser vs. the other
dense retrievers on the MS MARCO dev queries.

Interestingly, althoughANCEhas the lowest effectiveness amongst
the considered dense retrievers on queries without typos, it exhibits
the highest robustness to typos as it is consistently characterised
by the lowest effectiveness drop across all datasets and metrics:
at times, it even outperforms stronger dense retrievers on queries
with typos.

Hence, in answer to RQ1, we conclude that current state-of-the-
art sparse and dense retrievers are not robust to queries with typos.
Dense retrievers exhibit slightly higher robustness than sparse
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Model MS MARCO TREC DL 2019 TREC DL 2020
MRR@10 nDCG@10 MAP nDCG@10 MAP

TILDEv2 .337/.181 (-46.2%) .647/.371 (-42.6%) .417/.219 (-47.4%) .653/.437 (-33.1%) .427/.262 (-38.7%)
TILDEv2 (typos-aware) .327/.189 (-42.2%) .652/.388(-40.5%) .399/.226 (-43.3%) .622/.442 (-29.0%) .396/.257 (-35.1%)
uniCOIL .351/.190 (-46.0%) .700/.401 (-42.6%) .457/.240 (-47.4%) .688/.449 (-34.7%) .456/.278 (-39.1%)
uniCOIL (typos-aware) .343/.208 (-39.4%) .659/.439 (-33.4%) .427/.266 (-37.6%) .659/.479 (-27.4%) .425/.286 (-32.9%)
SPLADEv2 .355/.180 (-49.3%) .670/.362 (-46.0%) .434/.223 (-48.6%) .624/.390 (-37.5%) .421/.251 (-40.4%)
SPLADEv2 (typos-aware) .356/.237 (-33.4%) .690/.482(-30.1%) .433/.291 (-32.8%) .623/.459 (-26.3%) .408/.291 (-28.7%)
CoCondenser .376/.193(-48.6%) .689/.402 (-41.7%) .447/.244 (-45.4%) .675/.436 (-35.4%) .476/.287 (-39.8%)
CoCondenser (typos-aware) .376/.265 (-29.3%) .703/.507 (-27.9%) .450/.313 (-30.4%) .656/.512 (-22.0%) .457/.338 (-26.0%)

Table 2: The effectiveness of sparse retrievers (TILDEv2, uniCOIL, SPLADEv2) and a dense retriever (CoCondenser) with andwithout typos-aware
training. (We re-trained the original models for fair comparison). Effectiveness is reported on queries with and without typos (results to be
read as: <without/with>). For each method, statistically significant differences between our trained and our typos-aware trained models are
indicated in bold.

retrievers, and among them, ANCE shows the least degradation
due to typos.

Table 2 reports the results for RQ2, where we compare sparse
retrievers (TILDEv2, uniCOIL and SPLADEv2) and the state-of-the-
art dense retriever (CoCondenser) trained in their standard fashion
vs. with typos-aware training. Recall that for this comparison we
could not use the checkpoints made available by the original au-
thors, due to differences in training parameters with those we could
use for typos-aware training – and thus resulted in retraining the
basic models.

We start the analysis by comparing the results obtained by the
original model checkpoints (Table 1) and those obtained when we
trained these models (Table 2, our trained). For our trained version
of TILDEv2 and uniCOIL we obtained results that are substantially
similar to those of the original checkpoint, with no difference being
statistically significant. However, for SPLADEv2 and CoCondenser,
our trained model exhibits a lower effectiveness than the original
checkpoint.We consider this is due to the smaller batch size we used
for training: batch size is important for the contrastive loss with
in-batch negative samples [22], used by SPLADEv2 and CoCon-
denser. Nevertheless, the training with and without typos-aware
for SPLADEv2 and CoCondenser are conducted under the exactly
same conditions and hyperparameters. We believe this controlled
experimental setting is valid for studying the impact of typos-aware
training, and thus we proceed with using our trained SPLADEv2
and CoCondenser checkpoint also in the analysis that follows for
RQ2.

Next, we compare the results of the original training of sparse
and dense retrievers with their typos-aware training. Typos-aware
training is less effective for TILDEv2 and uniCOIL. The improve-
ment for queries with typos is marginal. When comparing to the
original training, TILDEv2 and uniCOIL trained with typos-aware
training achieve lower effectiveness, although the only statistically
significant difference is found for MRR@10 on MS MARCO (for
both TILDEv2 and uniCOIL) and nDCG@10 on TREC DL2019 (for
uniCOIL). Hence, we conclude that typos-aware training has little
effect to TILDEv2 and uniCOIL.

In contrast, typos-aware training appears toworkwell for SPLADEv2
and CoCondenser. When used on queries without typos, both the

SPLADEv2 and CoCondenser trained with typos-aware training
exhibit no statistically significant differences with the models we
trained with standard training. On the other hand, on queries with
typos, SPLADEv2 and CoCondenser trained with typos-aware train-
ing exhibit much higher effectiveness than their counterpart with
standard training, and these differences are statistically significant
on MS MARCO and TREC DL 2019.

It is notable that, although TILDEv2, uniCOIL, and SPLADEv2
are all sparse retrievers, we obtained considerably different re-
sults when comparing TILDEv2 and uniCOIL with SPLADEv2. The
typos-aware training is more effective for SPLADEv2 than that
for TILDEv2 and uniCOIL. We argue that this is due to the fact
that TILDEv2 and uniCOIL only have a passage expansion step
as data preprocessing strategy before training. On the other hand,
SPLADEv2 learns how to expand queries and passages on-the-fly
during training. Hence, SPLADEv2 is able to learn a query and
passage expansion pattern that tolerates the typos in queries where
TILDEv2 and uniCOIL cannot. This hypothesis is clarified by the
following examples. The test set contains the query with typo "who
kliled nicholas ii of russia" 6: here, the term "kliled" is a typo of
the term "killed". In this case, SPLADEv2 trained with typos-aware
training expands this query with the correctly spelled term "killed"
along with other synonyms such as "murder". However, our trained
uniCOIL and TILDEv2, no matter whether they are trained with or
without typos-aware training, cannot match the correctly spelled
term "killed" in a passage with the terms in the misspelled query
since they cannot expand the query with correctly spelled terms. On
the other hand, SPLADEv2 without typos-aware training also does
not provide an expansion of this query that contains the correctly
spelled terms. It is then logical that the improvements provided
by typos-aware training on SPLADEv2 are significant when in
presence of queries that contain typos.

Hence, in answer toRQ2, we found that the augmentation-based
typos-aware training [34] is effective to improve the robustness of
the current state-of-the-art sparse and dense retrievers (SPLADEv2
and CoCondenser) to queries with typos. On the other hand, we
found that this training regime hinders the effectiveness of the
considered sparse retrievers that only perform passage expansion
6The original query is in the DL2020 dataset, query id 1043135.
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(TILDEv2 and uniCOIL). We believe this finding would likely also be
applicable to the other sparse retrievers we did not experiment with
(e.g., DeepImpact), which before training also use passage expansion
only. Our results instead suggest that the end-to-end combined
passage and query expansion training strategy used by SPLADEv2
is beneficial when coupled with the typos-aware training strategy.

Our work did not examine the effectiveness of typos-aware train-
ing on more retrievers due to time limitation, and measuring the
effect of different types of typos on the training process was also
not considered. As shown by our experiments, the augmentation-
based typos-aware training paradigm is detrimental to TILDEv2 and
uniCOIL which are representative neural sparse retrievers. There
were a number of limitations related to the typos we considered.
First, as no large scale dataset that has enough queries with typos
and associated labelled passages was available, we had to resort to
synthetically generate typos. While these typos were realistic, they
only considered errors made with respect to insertion/deletion of
characters, and substitution of characters with those adjacent on the
keyboard; however, no phonetically compatible misspellings7 were
considered. We also only examined the possibility that a query con-
tained a single typo, while typos could be multiple in real queries.
Another limitation is that we considered typos that can occur on
languages based on western characters. We note that typos in other
languages, e.g. Chinese, would follow different patterns.

4 CONCLUSIONS
In this paper, we contributed a comparative study of the effective-
ness of sparse and dense retrievers on queries with typos. With
this respect, we found that both sparse and dense retrievers are not
robust to typos in queries, and sparse retrievers are generally more
sensitive than dense retrievers.

We also evaluated a data augmentation-based typos-aware train-
ing method [34], which was previously shown effective in making
dense retrievers more robust to queries with typos. We applied this
method to the sparse retrievers TILDEv2, uniCOIL, SPLADEv2 and
the state-of-the-art dense retriever CoCondenser. We found that
this training method is effective to make the CoCondenser more
robust to typos in queries: This is a novel contribution because
the CoCondenser uses a more sophisticated training strategy than
the dense retrievers for which typos-aware training was evaluated,
and thus it was unclear whether improvements would still apply.
On the other hand, however, when applied to the sparse retrievers
TILDEv2 and uniCOIL, we found that typos-aware training is less
effective for queries with typos, and it slightly hurts their effective-
ness on queries that do not contain typos. Interestingly, among the
considered sparse models, SPLADEv2 is the only sparse retriever to
be effective when typos-aware training is used. We then provided
an hypothesis that explains why this is so, along with an exam-
ple to support our intuition. Key to SPLADEv2 effectiveness when
combined with typos-aware training is SPLADEv2’s strategy for
both query and passage expansion. These findings more generally
suggest that typos-aware training could also be effective for sparse
retrievers if the end-to-end query and passage expansion strategy
is used during training.

7i.e., one that can be pronounced in the same way as the original word, e.g. hurd and
herd.
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