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ABSTRACT
Deep language models (deep LMs) are increasingly being used for
full text retrieval or within cascade retrieval pipelines as later-stage
re-rankers. A problem with using deep LMs is that, at query time,
a slow inference step needs to be performed – this hinders the
practical adoption of these powerful retrieval models, or limits
sensibly how many documents can be considered for re-ranking.

We propose the novel, BERT-based, Term Independent Likeli-
hood moDEl (TILDE), which ranks documents by both query and
document likelihood. At query time, our model does not require the
inference step of deep language models based retrieval approaches,
thus providing consistent time-savings, as the prediction of query
terms’ likelihood can be pre-computed and stored during index
creation. This is achieved by relaxing the term dependence assump-
tion made by the deep LMs. In addition, we have devised a novel
bi-directional training loss which allows TILDE to maximise both
query and document likelihood at the same time during training.
At query time, TILDE can rely on its query likelihood component
(TILDE-QL) solely, or the combination of TILDE-QL and its docu-
ment likelihood component (TILDE-DL), thus providing a flexible
trade-off between efficiency and effectiveness. Exploiting both com-
ponents provide the highest effectiveness at a higher computational
cost while relying only on TILDE-QL trades off effectiveness for
faster response time due to no inference being required.

TILDE is evaluated on the MS MARCO and TREC Deep Learning
2019 and 2020 passage ranking datasets. Empirical results show
that, compared to other approaches that aim to make deep lan-
guage models viable operationally, TILDE achieves competitive
effectiveness coupled with low query latency.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking; In-
formation retrieval query processing.
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1 INTRODUCTION
Deep language models like BERT [7] and T5 [21] are increasingly
being used for full index retrieval [6, 12, 16, 20] or for late-stage re-
ranking within cascade retrieval pipelines [8, 18, 19, 33] (i.e., where
highly ranked documents as ranked by an inexpensive ranker, e.g.,
BM25, are re-ranked by a more expensive ranker). These deep
language models have been empirically shown to outperform tradi-
tional retrieval baselines represent the current state-of-the-art in
terms of ranking effectiveness [14, 17].

There are four main patterns of use for deep language models
for retrieval: (i) as representation based methods [10, 12, 16, 27, 31],
(ii) as modified document text methods [6, 20], (iii) as direct deep
language model re-rankers [18, 19], or (iv) as deep query likelihood
models [8, 33]. Each pattern has different effectiveness and effi-
ciency trade-offs (see Section 2 and Table 1). Figure 1 illustrates
three of these four main patterns, along with the approach taken
by our proposed method (TILDE). Representation-based methods
(Figure 1, (a)) use two encoders to get query and document vec-
tor representations separately. As query and document do not di-
rectly interact with each other, the document representation can
be pre-computed and stored at indexing. The query representation
however needs to be computed at query time. On the other hand,
direct deep language model re-rankers and deep query likelihood
re-rankers (Figure 1, (a) and (b)) require query-document pairs as
input to the model, hence the inference step can only be performed
at query time. While deep language model and deep query like-
lihood model re-rankers are often highly effective, they are also
very inefficient. On the other hand, representation-based methods
and those based on modified document text demonstrate lower
effectiveness but a higher efficiency.

In this paper, we focus on deep query likelihood models [8, 33]
that typically rely on a transformer-based decoder as the model
architecture [14]. In this architecture, the likelihood of a query
term is estimated with respect to the previous terms in the query
(term dependence) through an inference mechanism, and the whole
collection shares a single model. Unlike other deterministic neural
re-rankers such as those that employ BERT [18, 19], a document’s
relevance score provided by a deep query likelihood model is more

https://doi.org/10.1145/3404835.3462922
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(a) Representation based
methods

(b) Direct deep LMs re-
rankers

(c) Deep query likelihood
models

(d) TILDE (ours)

Figure 1: High level architectures of three of the four main
patterns of use of deep language models in search, along
with the architecture of the proposed TILDEmethod. The ar-
chitecture of modified document text methods is not shown
for brevity.

explainable. This is because the likelihoods produced by these mod-
els can be considered to directly represent the importance of query
terms.

However, deep query likelihood models are very inefficient, even
when used as the final stage in a cascade pipeline. This inefficiency is
because the transformer model’s inference step is computationally
expensive and query likelihood cannot be pre-computed offline1
(e.g., during indexing). This is because the query needs to be ob-
served to compute query term likelihood due to how deep query
likelihood models compute query term dependencies. Performing
the inference step at runtime is infeasible as it would introduce
latency in the search system that is not acceptable by most users in
typical applications such as web, email, and desktop search. Hence,
often current deep query likelihood models cannot be used in real-
istic or practical search scenarios.

To overcome these inefficiencies, we propose TILDE, a novel
BERT-based Term Independent document-query Likelihood moDEl.
Unlike current deep query likelihood models, TILDE assumes that
query terms are independent. Importantly, each term’s query likeli-
hood can be pre-computed offline and stored in the index. By doing
so, TILDE does not require the expensive inference step at runtime,
typical of deep language models and deep query likelihood models.

We further propose a novel loss function that can be used to train
TILDE: the bidirectional query-document likelihood loss (BiQDL).
1Unless for a subset of pre-determined, perhaps popular, queries.

Table 1: High-level comparison of trade-off between effec-
tiveness and efficiencymade by the proposed TILDE and the
four typical patterns of use of deep LMs for search.

Method Effectiveness Efficiency
Representation Based [12, 16, 31] ++ +
Modified Document [6, 20] + +++
Deep LMs Re-ranker [18, 19] +++ - -
Deep QLMs Re-ranker [8, 33] ++ - - -
TILDE (ours) ++ +++

Unlike traditional query likelihood models [29, 30] and deep query
likelihood models [8, 33] which only optimise query likelihood
during training, BiQDL is used to train TILDE to maximise both
query and document likelihood at the same time. After training,
the learned model can be used to estimate query or document like-
lihoods. This provides further flexibility in the trade-off between
efficiency and effectiveness.When TILDE is set to rely only on query
likelihood (TILDE-QL), at query time the deep language model’s to-
kenisation step (see Figure 1 (d)) – a very fast operation – is the only
additional step required to conventional inverted index retrieval.
When TILDE is set to rely on both query and document likelihoods
(TILDE-QDL), then at query time both the deep language model’s
tokenisation and one typical deep language model’s inference step
are both required: while reducing effectiveness, the inference step
does provide additional relevance signals to the re-ranker, thus
further increasing effectiveness.

We investigate the effectiveness and efficiency of TILDE on the
MS MARCO passage ranking dataset and the TREC 2019 and 2020
Deep Learning datasets. Compared to representative deep LMs
based methods, TILDE exhibits a better trade-off between effec-
tiveness and efficiency than comparative deep language models for
search.

2 RELATEDWORK
Recent advances in natural language processing have seen the
introduction of deep language models, typically trained on large
amount of text [7, 21]. These deep LMs have been exploited to
improve search along four main patterns, which are characterised
by a trade-off between effectiveness and efficiency, exposed in the
high-level comparison of Table 1:

• representation based methods, like EPIC [16], ColBERT
[12], RepBERT [31], CLEAR [10] and ANCE [27]. These
methods compute a vector-based representation for each
document at indexing (akin to signatures). These vectors
are stored in memory and used at retrieval time by doing a
single inference to obtain the query vector representation
and multiple vector comparisons between documents’ and
query’s (dense) vectors: a generally fast operation.

• modified document text methods, like docTTTTTquery
[20] and DeepCT2 [6]. These methods use deep LMs to gen-
erate terms to append to the original documents, which

2DeepCT modifies term frequency statistics in the inverted index. This could be
implemented by modifying each document by repeating the terms in the text as
required to achieve the required term frequency. This is the approach followed by Dai
et al. in their original implementation [6].
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are then indexed once expanded. By doing this, new terms
are added to the document and existing terms are also re-
weighted. No deep LM is used at query time.

• direct deep language model re-rankers, like the BERT
re-ranker [18] and Mono-T5 [19]. These methods fine-tune
deep (pre-trained) language models on text matching tasks.
They require both query and document text as model input,
and use a classification layer on top of the model’s output
embeddings (e.g., the [CLS] embedding for BERT) to produce
a score indicating the relevance of a document to a query.

• deep query likelihood models, like ranking by genera-
tion [8] and QLM-T5 [33]. These methods embrace the query
likelihood ranking paradigm where the probability of a docu-
ment being relevant to a query is estimated by the likelihood
of generating the query text given the document text. As
for direct deep language model re-rankers, the common ap-
proach is to feed query–document pairs through the model
and sum the log probabilities of the query tokens’ predictions
provided as output by the model.

Direct deep language model re-rankers have shown to provide
significant effectiveness improvement over other neural rerankers [14].
However, because at query time these methods require to infer
scores from the deep LMs, a process that is computationally de-
manding and incurs high latency, they are typically ran as late-stage
re-rankers within re-ranking pipelines because of the latency added
by the inference process. Even so, though, some methods are in-
feasible to be used in production-ready systems. For example the
additional latency imposed by the BERT re-ranker [18] is in the
order of 3,500 ms on high-performance GPUs. Recent works have
attempted to dynamically identify appropriate points for early excit-
ing for accelerating the BERT inference step, at the expense of small
degradation of model quality [11, 26, 32]; yet, the up to 40% savings
in runtime [26] still render these methods impractical for deployed
search engines. Deep query likelihood models follow along the
same lines, though being generally less effective and less efficient
than direct deep language model re-rankers [8, 33].

The representation based methods and the modified document
text methods address the efficiency drawback of the previous meth-
ods. In the first type of methods, this is achieved by storing the
vectors computed offline as signatures, which are then used at re-
trieval by performing vector based similarity with the query vector.
Nevertheless, in these approaches the query vector does still need to
be computed online, thus requiring the query to be ran through the
inference process of the deep LMs: this adds a latency factor in the
order of tens or hundreds (tens) of milliseconds, when computation
is performed on CPU (GPU) [16]. In the second type of methods, at
indexing time each document is expanded (adding new and existing
terms) using the deep LMs: these expanded documents are the ones
stored in the index. Then, traditional inverted file retrieval methods
(e.g., BM25) are applied and no deep LMs inference is required at
query time, thus exhibiting the fastest runtimes among methods
exploiting deep LMs. However, the low latency obtained by these
two types of methods does not come free as speed up in retrieval are
traded off for lower effectiveness compared to direct deep language
model re-rankers.

The method proposed in this paper, TILDE shares similarities
with representation based methods [12, 16, 31], with two fundamen-
tal differences. First, these previous representation based methods
fine-tune their deep LMs to maximize the similarities between the
representation of documents and the queries for which they are
relevant. These learned representations are dense vectors in a high
dimensional space, rendering them of little interpretability (i.e.,
not explainable). On the other hand, our fine-tuning objective is
rooted on query and document likelihood, and the prediction made
by TILDE can be considered as an indicator of term importance,
hence more interpretable. Second, although previous methods are
able to avoid performing inference for documents at query time,
they still need to perform inference for the query representation.
Since commonly the size of these models is large, the inference
time required when answering a query is considerable. In contrast,
TILDE-QL, which only relies on query likelihood, requires just the
deep LM’s tokenizer to extract the token IDs from the query, hence
avoiding the expensive inference step at query time.

3 METHOD
TILDE is influenced by deep query likelihood and deep document
likelihood ranking paradigms [8, 33]. In this section, we provide
an explanation of deep query likelihood and document likelihood
models ( 3.1), a theoretical framework describing how deep query
likelihood and document likelihood models are used in TILDE ( 3.2)
as well as our new bidirectional query-document likelihood loss
(BiQDL) that is used to fine tune TILDE ( 3.3).

3.1 Ranking by Query & Document Likelihoods
Deep languagemodels are able to predict the conditional probability
of the next token xi given the previous tokens in a sequence [2]:

P(xi ) = Pθ (xi |x<i ) (1)

where θ are the weights of the deep language model. Based on Eq.1,
typical deep query likelihood models [8, 33] compute the log query
likelihood (QL) as:

QL(q |dk ) =
|q |∑
i
log(Pθ (qi |q<i ,dk )) (2)

where q is the query text and dk is the text of the k-th document
in the candidate set D (dk ∈ D). That is, the log probability of
the query token qi is conditioned on all the document tokens and
all the previous query tokens: hence this type of query likelihood
model are term dependent models. The candidate documents are then
ranked in descending order of the log query likelihood estimated
by the query likelihood model.

Similarly, candidate documents also can be ranked according to
the log document likelihood (DL) function:

DL(dk |q) =
1

|dk |

|dk |∑
i

log(Pθ (dki |d
k
<i ,q)) (3)

where the log probability of document tokens is estimated by a
deep document language model. When ranking documents with
document likelihood, the final document log probability typically
needs to be normalized by the length of the document (the first
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term in the equation). This is because longer documents tend to
have lower log probabilities and thus without normalization are
more likely to be incorrectly ranked lower than short documents.
Deep document language models have a similar model architectural
as the deep query likelihood models with one key difference: the
objective function (Eq. 2 vs. Eq. 3) that is used to fine tune the
model.

Deep query likelihood and document likelihood models have
been shown to be much more effective than traditional statisti-
cal query likelihood models [8, 33]. This is because deep query
likelihood and document likelihood models can more effectively
leverage patterns in human language embedded in the pre-trained
deep language models, providing more accurate likelihood estima-
tions. However, this improvement in effectiveness comes with two
trade-offs. First, deep language models employ large neural net-
works with millions or even billions of parameters [3]. Because of
this, inferring likelihoods in these models is expensive3. Second, as
the likelihood of the next token is dependent on all previous context
tokens (Eq. 1), both a query and a document need to be provided to
the model at the same time. As query likelihoods typically cannot
be predicted ahead of time, inferences must be performed online (at
runtime). Also, the number of candidate documents to be ranked is
usually large (e.g. top 1,000) and, thus, multiple inference steps are
required. As result, deep query likelihood and document likelihood
methods, e.g., QLM-T5 [33], exhibit poor runtime efficiency (high
query latency), preventing the adoption of them in production-level
search engines.

3.2 TILDE: Term Independent Likelihood
moDEl

The key factor influencing the efficiency of existing deep query
likelihood and document likelihood models is that terms in a docu-
ment and a query are modelled as dependent on each other. While
this is realistic, it is often relaxed in typical information retrieval
scenarios. For example, traditional bag of words [22] and language
modelling [29, 30] approaches assume terms are independent. In
devising TILDE, we follow this common assumption of term inde-
pendence. Thus the likelihood of a query (TILDE-QL) or a document
(TILDE-DL) can be computed as:

TILDE-QL(q |dk ) =
|q |∑
i
log(Pθ (qi |dk )) (4)

TILDE-DL(dk |q) =
1

|dk |

|dk |∑
i

log(Pθ (dki |q)) (5)

TILDE is based on the BERT deep language model [7]. To com-
pute the term independent query likelihood (TILDE-QL), only the
text of a document is required as input for BERT; the output is the
log probability for each query token. We compute this using a lan-
guage modelling head on top of the [CLS] token provided as output
by BERT. Then, the query text is tokenised into query token IDs by
the BERT tokeniser. The IDs are used to look up a corresponding log
probability from the likelihood distribution predicted by TILDE-QL.
Finally, all the corresponding log probabilities are summed to form

3And usually GPUs are required to provide acceptable inference time.

the query likelihood. The term independent document likelihood
(TILDE-DL) is computed in a similar fashion, but with the query
taking the place of the document.

Previous studies have shown that ranking documents by query
likelihood is much more effective than ranking by document likeli-
hood [8]. This is because documents are usually much longer than
queries. When a deep query likelihood model estimates query like-
lihood, the model has been provided with richer information, and
hence tends to be more accurate. However, note that document like-
lihood models are similar to generative models as they have been
trained to predict the next tokens in a document with only a few
query tokens as input. It is well known that deep language models
have the ability to generate in-topic text [? ], hence document like-
lihood models should also provide useful topic-level information
about the document. Based on these intuitions, we combine the
deep query and document likelihood components of TILDE into a
unique query-document likelihood function:

TILDE-QDL(q,dk ) =

= α · TILDE-QL(q |dk ) + (1 − α) · TILDE-DL(dk |q) (6)

where α is a weight factor used to control the influence of query
likelihood over document likelihood. For example, when α = 1,
the document is ranked solely by TILDE-QL, and when α = 1 the
document is ranked solely by TILDE-DL.

Compared to standard deep query likelihood and document like-
lihood models [8, 33] based on Eq. 2 and 3, TILDE only requires the
query text or the document text as the input. The output is the log
probabilities for all the tokens in the deep language model’s vocab-
ulary. In other words, TILDE maps the input query or document
text to a log probability distribution over the entire vocabulary, and
this distribution can be considered as the query or document repre-
sentation. As for representation-based methods [10, 12, 16, 27], the
document representation (log probability distribution) that TILDE
produces can be pre-computed and stored offline, during indexing
time. If TILDE-QL is used, no expensive deep language model in-
ference step is required, as documents have been pre-processed at
indexing time and the query only requires tokenisation. If TILDE-
DL is used, only one deep language model inference is required to
obtain a query representation, while the documents’ tokenisation
can also be performed at indexing. These attributes enable TILDE
to deliver a significantly lower query latency compared to other
deep query likelihood and document likelihood methods.

3.3 Bi-directional query-document likelihood
loss (BiQDL)

Standard deep query likelihood and document likelihood mod-
els are typically trained with negative log likelihood loss over
relevant query-document pairs provided by the training dataset,
i.e., D = {(q1,d1), (q2,d2), ...., (q |D |,d |D |)} [8, 33]. However, this
loss function is not suitable for TILDE as we treat predicted tokens
independently and aim to predict all possible relevant query or doc-
ument tokens given a document or query. This problem is similar
to the multi-label classification task, where in our case the number
of classes is the size of the vocabulary and token IDs in the relevant
query or document are the target labels. Thus, a better choice to
train our model is negative log binary cross entropy loss:
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LQL(D) = −
∑

(q,d )∈D

1
|V |

|V |∑
i
y log(Pθ (ti |d))

+ (1 − y) log(1 − Pθ (ti |d))

(7)

where V is the vocabulary, ti is i-th token in the vocabulary, and
y = 1 if ti is in the query text, otherwise y = 0. Note, Eq. 7 is used
to train the TILDE-QL model. To train the TILDE-DL model, we use
the LDL loss where the only two differences are that the document
d is replaced with query q, and y becomes the indicator of whether
ti is present in the document text or not.

As we discussed in Section 3.1, query and document likelihoods
are both useful in providing information about a query and a docu-
ment, thus it is desirable to train TILDE-QL and TILDE-DL with
LQL and LDL separately so that TILDE-QDL (Eq. 6) can be used
to rank documents. However, inspired by Symmetric Cross En-
tropy [24], an alternative way of training the full TILDE-QDLmodel
is to leverage both LQL and LDL at the same time. To achieve
this, we propose the bi-directional query-document likelihood loss
(BiQDL):

LBiQDL(D) =
LQL(D) + LDL(D)

2
(8)

By using LBiQDL , TILDE maximises both QL and DL simultane-
ously during training. As the result, TILDE trained with LBiQDL
can be used to serve as both QLM and DLM at the same time.

4 EXPERIMENTAL SETTINGS
In order to guide the empirical experiments for studying TILDE,
we propose the following research questions:
RQ1: What is the effect of assuming query term independence in

deep query likelihood models for retrieval?
RQ2: How does TILDE trade-off effectiveness for efficiency using

the TILDE-QL and TILDE-DL components?
RQ3: What effect has the bi-direction query-document likelihood

loss have on effectiveness for TILDE?
RQ4: What effect does the weight factor α have on TILDE?

The code that implements TILDE and the other methods consid-
ered in this paper is available at https://github.com/ielab/TILDE,
along with the experimental results.

4.1 Datasets and Evaluation Measures
We conduct our experiments on the MS MARCO dataset 4 and the
two recent TREC Deep Learning tracks (DL2019, DL2020) [4, 5].

The MS MARCO dataset consists of approximately 8.8 million
passages (average length: 73.1 terms) extracted from Web pages,
and approximately 1 million natural-language questions (average
length: 7.5) gathered from the Bing search engine’s query log.
Queries in the dataset are split into train, dev, and eval sets5. Each
query is associated with shallowly-annotated judgments where
on average only one passage is marked as relevant and no irrel-
evant passages are identified. We consider unjudged documents
as irrelevant when computing evaluation metrics. Because of the
large number of queries, the MS MARCO dataset has been widely
used for training deep language models based retrieval methods.
4https://microsoft.github.io/msmarco/
5The eval set is not made publicly available as it is used for the MS MARCO leader-
board

Following standard practice from the literature [12, 14, 16, 33], in
our empirical evaluation we use the dev set (≈7k) and the official
evaluation measure MRR@106.

The TREC DL2019 and DL2020 collections share the passage
corpus with MS MARCO. Unlike MS MARCO, these collections
provide small query sets of four-point scaled dense judgments (43
for DL 2019, 54 for DL2020). Following standard practice in TREC
DL [4, 5], we use nDCG@10 and MAP to evaluate our experiments
on these collections to easily compare our methods to past and
future work.

For all evaluation measures, differences between methods are
tested for statistical significance using a paired two-tailed t-test,
with Bonferroni correction.

In addition to effectiveness, we also measure the efficiency of
the approaches. We do so by measuring the average query latency
on the MS MARCO dataset. We do not measure latency on the
TREC DL collections because of the relatively fewer queries. As
the MS MARCO dataset contains more queries, average latencies
measured on this dataset are more reliable. Efficiency experiments
were conducted on a 80 CPUs Linux CentOS server with Intel(R)
Xeon(R) CPU E7-4830 v2 @ 2.20GHz, and 1TB of DDR 3 RAM; no
GPU computation was used for the efficiency experiments.

4.2 Baselines
We compare the effectiveness and efficiency of TILDE to the fol-
lowing baselines:

BM25 [22]: A widely used statistical bag-of-words approach that
is commonly used as the first-stage retrieval method by most deep
language model based re-rankers. We also use BM25 as the first-
stage ranker, on top of which we apply TILDE (and other deep LM
re-rankers). We use the prebuilt Anserini [28] MS MARCO index
and pyserini [1] with default settings for retrieval.

docTquery-T5 [20]: A T5-basedmodified document textmethod.
Instead of directly modifying document term frequency values
stored in the index as done by DeepCT, this method performs term
expansion to documents ahead of indexing. This expansion is done
by generating possible queries and appending them at the end of
the original documents. The modified documents are then indexed
and the standard BM25 ranker can be used at retrieval – as such,
docTquery-T5 can be used as first-stage retrieval method. Compared
to DeepCT, docTquery-T5 has been empirically found to provide
higher effectiveness gains over BM25 [14]. Thus, in our experiments
we also use docTquery-T5 as first-stage retrieval model. We use
pyserini to implement docTquery-T5.

EPIC [16]: A recent representation basedmethod that uses BERT.
Document and query representations in EPIC are fine tuned using
similarity matching, and thus at query time BERT inference has
to be applied on the query. We use the original implementation of
EPIC provided in the OpenNIR toolkit [15].

BERT-base / BERT-large re-ranker [18]: A direct deep lan-
guage model re-ranker approach, based on BERT. This approach
requires that both the query and the document are jointly provided
as model inputs at query time, as for deep query likelihood models.

6Despite recent, somewhat differing opinions expressed in the community [9, 23], and
recent empirical evidence [34], MRR@10 is still the official (and only) measure used for
reporting on MS MARCO, and thus we adapt to this convention to allow our results to
be easily compared to past and future work.

https://github.com/ielab/TILDE
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Instead of using query likelihood to directly estimate relevance, this
model treats ranking as a classification task and predicts a score for
each query-document pair. The BERT-large re-ranker differs from
the BERT-base from the (larger) number of parameters.

QLM-T5 / QLM-BERT [33] A recent deep query likelihood
model that assume term dependencies with respect to terms in
queries and documents. In addition, we provide a further extension
of this model by considering a version based on the BERT deep
language model. This is done to be able compare to TILDE to deter-
mine the impact of taking the term independence assumption, as
the language models would have the same architecture and num-
ber of parameters. However, we cannot directly use the original
BERT implementation because BERT uses a transformer-encoder,
which applies bidirectional self-attention: the input tokens can pay
attention to the next tokens in the sequence and thus the model can
easily predict any target token – these next tokens then need to be
masked out. To make the BERT-based term-dependent model work,
we apply attention masks on each layer of BERT so as to allow the
current token to pay attention only to itself and the previous tokens.
By doing this, we change BERT into a left-to-right architecture and
can thus apply the same next token prediction training objective
used by the T5-based model. For the QLM-T5 model, we follow the
training settings described by Zhuang et al. [33].

4.3 Training Details
We use the BERT-base-uncased deep language model [7] as the
main architecture of TILDE. This language model has been widely
adopted in other relevant approaches [6, 12, 16, 18].

We fine tune TILDE using the BiQDL loss function (Section 3.3)
and the official MSMARCO train set queries and judgements (≈533k
relevance judgements). We then evaluate this fine tuned model the
MS MARCO, TREC DL2019, and DL2020 collections. Query and
passage pairs are tokenised using the BERT tokeniser provided in
the Huggingface implementation [25]. The tokeniser maps each
term in the target text into one or more token IDs into BERT’s word-
piece vocabulary. The original vocabulary size of BERT is 30,522;
however, we find that removing stopwords and symbols in the
target tokens improves effectiveness (Note, the model input texts
are unchanged). 7 This is reasonable because stopwords such as
“is” appear almost in every passage, thus, in the term-independent
model, these terms would be likely incorrectly considered as ex-
tremely important. After stopwords removal, the BERT word-piece
vocabulary comprises of 28,403 tokens.

To investigate the impact of the proposed BiQDL loss function,
we separately train three TILDE models each with the LDL or LQL
or LBiQDL .

For all BERT-based models, we use the Adam optimizer [13] with
learning rate of 2e-5. For the T5-based models, we use a learning
rate of 1e-3. We train all models on 10 epochs with batch size of
128 across the entire training set.

5 RESULTS
The main results of our empirical experiments aimed at comparing
TILDE with previous representative methods and investigating the

7We use the stopwords provide by the Python nltk library, but we keep where, how,
what, when, which, why, who.

research questions of Section 4 are reported in Table 2. Next, we
examine these results in details by answering each of the research
questions.

5.1 RQ1: Impact of Term Independence on
Deep Query Likelihood Models

RQ1 investigates the impact of relaxing term dependence modelling
in deep query likelihood models. This aspect in fact represents the
main difference between the proposed TILDE approach, which as-
sumes term independence, and the previous deep QLMs [8, 33],
which instead model term dependencies. To answer RQ1, we com-
pare the results obtained by TILDE with those obtained by Zhuang
et al.’s QLM-T5 and the modification of that method that we intro-
duced in Section 4.2, QLM-BERT. For both methods we only focus
on the versions with query likelihood only for RQ1 (i.e. TILDE-QL
and QLM-BERT-QL). For all approaches, we perform a re-ranking
of the top 1,000 results from BM25. Throughout the analysis we
refer to the results reported in Table 2.

We first start by examining TILDE-QL and QLM-BERT-QL: these
methods rely on the same pretrained deep language model, BERT.
This comparison allows us to ascertain that differences in perfor-
mance are due to the term independence assumption (and the con-
sequent changes in the ranking method) rather than the underlying
deep language model (as T5, used in QLM-T5, has a larger num-
ber of parameters than BERT). On MS MARCO, both TILDE-QL
(p = 3.0 × 10−46) and QLM-BERT-QL (p = 7.7 × 10−43) signifi-
cantly improve BM25 results; and QLM-BERT-QL obtains a higher
MRR@10 than TILDE-QL, but the difference is not highly statis-
tically significant (p=0.045). Similar trends are also observed for
DL2019 and DL2020 in terms of nDCG@10 and MAP, except that
for on DL2020, TILDE-QL surprisingly achieves a higher MAP score
(0.406 vs 0.391), though the difference is not statistically significant
(p=0.77).

We also consider the effectiveness of QLM-T5-QL. This model
records higher effectiveness than the BERT-based counterpart: this
is due to a more powerful pre-trained language model, T5, which
compared to BERT features a higher number of model parameters.
Differences between QLM-T5-QL and QLM-BERT-QL are not sta-
tistically significant in DL2019 and DL2020, but are for MRR@10
on MS MARCO (p=0.03). Differences between QLM-T5-QL and
TILDE-QL are statistically significant for nDCG@10 (p=0.009) but
not for MAP (p=0.07) on DL2019 and for both measures on DL2020
(nDCG@10: p=0.45; MAP: p=0.69).

The results indicate that relaxing term dependence in deep QLMs
decreases effectiveness, although not significantly. This result is to
be expected (and thus the results forMAP onDL2020 are surprising),
because QLM-BERT-QL takes query-document pairs as the input to
the model and thus the query text can directly interact with the doc-
ument text, hence providing more accurate likelihood predictions.
Moreover, predicting the next query token based on the document
text and the previous query tokens should provide smoother and
more grammatically correct predictions as these predictions are
dynamically changed based on the previous query tokens. On the
other hand, TILDE-QL predicts the query likelihoods only based on
the document text hence it loses the benefits of the query context.
Nevertheless, the modelling of term dependencies in QLMs comes
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Table 2: Evaluation results. Latency is measured in milliseconds per query (query inference + re-ranking, lower the better).
Note: the latency for re-rankers does not include the latency of their first stage retriever.
∗: BM25+BERT-base/large results are obtained from the literature (and thus not available for all measures/datasets); latency
values for these models were obtained using a GPU server.
∗∗: All deep query likelihood efficiency results have been obtained by us also using a GPU server, rather than the CPU server
used for the remaining experiments.

MS MARCO DL2019 DL2020

Method MRR@10 Latency nDCG@10 MAP nDCG@10 MAP

BM25 0.187 130 0.506 0.377 0.480 0.286

(i) Representation based
BM25 + EPIC 0.270 356 + 108 0.609 0.411 0.576 0.349
docTquery-T5 + EPIC 0.302 279 + 20 0.686 0.473 0.624 0.405

(ii) Modified document text
docTquery-T5 0.277 143 0.641 0.462 0.619 0.407

(iii) Direct deep language model
BM25 + BERT-base∗ 0.347 2, 970 0.703 — 0.668 0.431
BM25 + BERT-large∗ 0.365 3, 500 0.738 0.506 — —

(iv) Deep query likelihood
BM25 + QLM-BERT∗∗

QL 0.281 4, 500 0.641 0.482 0.625 0.391
DQL 0.290 9, 000 0.662 0.484 0.635 0.401

BM25 + QLM-T5∗∗
QL 0.294 5, 000 0.653 0.497 0.652 0.426
DQL 0.301 10, 000 0.672 0.505 0.665 0.435

TILDE (ours)
BM25 + TILDE

TILDE-QL 0.269 0.5 + 29 0.579 0.406 0.620 0.406
TILDE-QDL with BiQDL 0.280 290 + 64 0.609 0.420 0.621 0.412

docTquery-T5 + TILDE
TILDE-QL 0.285 0.5 + 0.9 0.650 0.467 0.624 0.417
TILDE-QDL with BiQDL 0.295 290 + 3.1 0.654 0.468 0.622 0.413

at a cost: QLM-BERT-QL and QLM-T5-QL have a latency of several
orders of magnitude higher than that of TILDE-QL. In fact, TILDE-
QL only adds 29.5 ms to the retrieval pipeline (as measured on the
CPU server) and thus can easily be considered for deployment in
practice. Conversely, QLM-BERT/T5 require approximately 5,000
ms (on a faster, GPU server), rendering them of impractical use.

5.2 RQ2: Trade-off between Effectiveness and
Efficiency in TILDE

RQ2 investigates the trade-offs that TILDE enables between effec-
tiveness and efficiency by allowing to use the deep query likelihood
component alone, or this in conjunction with the deep document
likelihood component. In fact, when TILDE is set to only rely on the
deep query likelihood component (TILDE-QL, i.e., α = 1 in Eq. 6),
queries are processed by the BERT tokeniser, no model inference
is required at query time, and only the summation of the log prob-
ability associated to the target query tokens for each document
needs to be computed. When TILDE instead is set to rely on both
deep query and document likelihood components (TILDE-QDL),
along with the use of the BERT tokenizer to process queries, one

inference step is needed to obtain the likelihood distribution for
the document tokens from the query. In addition, document log
likelihoods also need to be summed . As the TILDE-DL compo-
nent can provide extra topic-level information about documents,
as discussed in Section 3, we expect TILDE-QDL to achieve higher
effectiveness than TILDE-QL.

To answer RQ2 we compare the results reported in Table 2 for
TILDE-QL and TILDE-QDL; note that the results for TILDE-QDL
were obtained setting α = 0.5 (a study of different settings for α is
performed for RQ4). We observe that in the majority of the cases
TILDE-QDL is better than TILDE-QL, across datasets, measures
and initial stage of retrieval (BM25 and docTquery-T5), with the
only exception of when re-ranking docTquery-T5 results on DL2020,
where both nDCG@10 andMAP of TILDE-QL are higher than those
of TILDE-QDL. All differences between TILDE-QL and TILDE-QDL
are however not statistically significant.

We further note that the same general trend is observed also for
the QLM-BERT/T5 methods, for which variants that employ both
deep query and document likelihoods (DQL) are better than the
corresponding ones using only query likelihood (QL).
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Table 3: Ablation study of loss and scoring functions on MS
MARCO.

Scoring Loss MRR@10

TILDE-QL LQL (w/o clean_vocab) 0.257
TILDE-QL LQL 0.264
TILDE-DL LDL 0.056
TILDE-QDL LQL , LDL 0.276

TILDE-QL LBiQDL 0.269
TILDE-DL LBiQDL 0.056
TILDE-QDL LBiQDL 0.280

The trends identified above suggest that the deep document
likelihood component generally improves the effectiveness of both
TILDE and term-dependent deep query likelihood approaches, though
not significantly.

The analysis so far, however, has only considered the effective-
ness of the approaches. Next we consider their efficiency. TILDE-QL
is sensibly more efficient than TILDE-QDL. This is because TILDE-
QL uses the BERT tokenizer (a look-up table) to process queries;
by doing so TILDE-QL only requires 0.5ms to generate the query
representation. For document re-ranking, TILDE-QL requires 29ms
to re-rank the top 1,000 results for BM25 and 0.9ms to re-rank the
top 20 results for docTquery-T5. TILDE-QDL in fact requires the
additional inference step for processing the query and the com-
putation of document likelihoods. Thus, the small improvements
provided by TILDE-QDL over TILDE-QL in terms of effectiveness
come at a cost in terms of efficiency.

When compared to other approaches that make use of deep lan-
guage models, we observe that there are no statistically significant
differences among TILDE-QL and EPIC effectiveness results (across
all datasets and measures). However, because TILDE-QL requires
no inference, it enjoys a speed up in runtime of approximately 15
times compared to EPIC when re-ranking BM25, and it is even
faster when re-ranking docTquery-T5 results (as only 20 passages
are re-ranked – as for EPIC). On the other hand, TILDE-QDL (i.e.
when using also the deep document likelihood) features a runtime
comparable to that of EPIC, as both methods required a inference
step at query time – and no statistically significant differences in
terms of effectiveness are detected between the two methods. Com-
pared to term-dependent QLMs and BERT-based re-rankers, any
version of TILDE generally provides lower effectiveness; however
TILDE is order of magnitude more efficient.

5.3 RQ3: Impact of BiQDL on Effectiveness
RQ3 investigates the impact of the proposed bi-direction query-
document likelihood loss (BiQDL) on TILDE. To perform this we
report the results of an ablation study performed on MS MARCO
when re-ranking results from BM25. This study considers fine tun-
ing TILDE with the different loss functions described in Section 3.3.
We also consider the effect the stopword removal performed on the
BERT vocabulary has on effectiveness.

The results of the ablation study are reported in Table 3. We
first note that removing stopwords and symbols from the original

BERT vocabulary is helpful as they are not important for term-
independent models. Thus for the reminder of the ablation study
we use the reduced vocabulary.

When using TILDE-QL, we find that the version trained with
LBiQDL is more effective than that trained with LQL ( 0.269 vs
0.264, differences not statistically significant). This is interesting as
LQL aims to optimize deep query likelihood only while LBiQDL
aims to optimize both deep query and document likelihood. Thus,
the addition of the document likelihood loss component inLBiQDL
also helps optimizing the query likelihood. We then compare the
results obtained for TILDE-QDL: not surprisingly, when fine tuned
with LBiQDL , this version of TILDE achieves better effectiveness
than when scoring with models fine tuned with LQL and LDL
separately (0.276 vs 0.280). Thus, in answer to RQ4, the bi-direction
query-document likelihood loss improves the fine tuning of TILDE.

Further note that all models that use TILDE-DL for ranking
perform badly, even whenLDL is used as loss function. This finding
is in line with previous work [8] that reported that deep document
likelihood alone is unable to provide a reliable relevance signal.
However, we do find that combining the deep query likelihood and
document likelihood provide a higher effectiveness than the query
likelihood alone. For more details, we refer the reader to the next
section where we study the effect of the weight factor α .

5.4 RQ4: Impact α on Effectiveness
RQ4 investigates the impact on effectiveness of the weight factor
α , which controls the mix of deep query and document likelihood
in TILDE-QDL. When examining the previous research questions,
we reported the results obtained by fixing α = 0.5. Here instead
we use Eq. 6 as the scoring function and vary α between α = 0 (DL
only) to α = 1 (QL only), with point-wise increments. Results are
evaluated in terms of nDCG@10 and MAP on both DL2019 and
DL2020 (results on MS MARCO show less stable trends because
MRR@10 is not a stable metric).

Empirical results are reported in Figure 2. When setting α = 0,
passage relevance is estimated using deep document likelihood only,
and effectiveness is low across datasets and evaluation measures.
Surprisingly, when increasing α to 0.1, the effectiveness already
increases significantly in both datasets. This suggests that the deep
query likelihood component is very important as it helps to improve
effectiveness even just by only adding a small portion of it. We
observe that the effectiveness further continues to increase up to
α = 0.4; after this point, the effectiveness starts to drop down.
This finding is important, as it means that the deep document
likelihood is also helpful to deliver high effectiveness, confirming
our hypothesis that document likelihood provides a useful relevance
signal.

6 CONCLUSION
In this paper, we propose a novel BERT-based deep query likeli-
hood model called TILDE that computes likelihoods without token
dependencies. This unique feature of TILDE means that the to-
kens’ likelihood can be pre-computed and stored at indexing time.
Our model can further provide a flexible trade-off between effec-
tiveness and efficiency: this is achieved by balancing two scoring
components, namely the deep query likelihood (QL) and the deep
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Figure 2: nDCG@10 (first row) andMAP (second row) values
for different weight factor α on DL 2019 and 2020 datasets.

document likelihood (DL). When TILDE solely relies on QL, queries
are processed by the pre-trained deep language model tokeniser
and therefore no expensive inference is required at query time. In
this case, TILDE achieves considerable lower query latency than
other deep language model based re-rankers. without sacrificing
much effectiveness. When the highest effectiveness is preferred,
TILDE can trade-off efficiency for effectiveness by leveraging its DL
scoring component to obtain a stronger document relevance signal,
thus achieving higher effectiveness. To fine tune TILDE to better
leverage both deep likelihood components, we further propose the
bi-direction query-document likelihood loss (BiQDL). When BiQDL
is used, TILDE maximizes both QL and DL at the fine tuning stage.
We perform an ablation study that shows TILDE fine tuned with
BiQDL is more effective than when TILDE is fine tuned trained with
standard loss functions. Future work will focus on investigating
more complex model architectures designed specifically for the
QL and DL components as the standard BERT pre-trained model
simply treats these as the same.

Broader impact
The research presented in this paper may inspire a new direction
for improving the efficiency of BERT-based rankers. Our work has

shown that a complex query encoder for BERT-based rankers is ac-
tually not necessary. The reason for this is intuitive: queries usually
are much shorter than documents (sometimes are just a single key-
word), thus query encoders can be simpler than document encoders.
A simple query encoder is especially beneficial for representation-
based rankers for which the query latency heavily depends on the
query encoder inference time. Our proposed TILDE model can be
thought of as an extreme case of query encoder simplification – no
neural network layers are used in TILDE’s encoder. Because of this,
TILDE’s query encoder inference can be performed efficiently in
devices with low computational resources, such as mobile phones
and other embedded devices.
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