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ABSTRACT
As in other fields of artificial intelligence, the information retrieval
community has grown interested in investigating the power con-
sumption associated with neural models, particularly models of
search. This interest has become particularly relevant as the en-
ergy consumption of information retrieval models has risen with
new neural models based on large language models, leading to an
associated increase of CO2 emissions, albeit relatively low com-
pared to fields such as natural language processing. Consequently,
researchers have started exploring the development of a green
agenda for sustainable information retrieval research and oper-
ation. Previous work, however, has primarily considered energy
consumption and associated CO2 emissions alone. In this paper,
we seek to draw the information retrieval community’s attention
to the overlooked aspect of water consumption related to these
powerful models. We supplement previous energy consumption
estimates with corresponding water consumption estimates, con-
sidering both off-site water consumption (required for operating
and cooling energy production systems such as carbon and nuclear
power plants) and on-site consumption (for cooling the data centres
where models are trained and operated). By incorporating water
consumption alongside energy consumption and CO2 emissions,
we offer a more comprehensive understanding of the environmental
impact of information retrieval research and operation.

CCS CONCEPTS
• Information systems → Retrieval efficiency; • Hardware →
Impact on the environment.
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1 INTRODUCTION
Over time, information retrieval (IR) systems have increased in
complexity, evolving from simple keyword-matching models based
on statistics [31] to feature-derived learning to rank models [22]
to the current state of retrieval pipelines that include neural mod-
els [21, 25, 37]. Neural models based on large language models have,
in particular, demonstrated exceptional performance in various
tasks, such as passage and document retrieval, question-answering,
cross-lingual retrieval, and domain-specific search [15, 21, 37, 38,
40, 42, 43]. However, as models increase in complexity and size, so
does their energy consumption [32]. Strictly associated with energy
consumption is the amount of carbon dioxide (CO2) emissions and
the water consumption entailed by the energy production process
and the cooling of the data centers in which these models are exe-
cuted. These aspects have raised concerns about the environmental
impact of information retrieval [32].

Previous research has started to address the energy consumption
and associated CO2 emissions aspects of IR models and research. In
particular, Scells et al. [32] have reported these factors for several
popular IR methods and have outlined an agenda for environmen-
tally sustainable IR research. However, no attention has been given
to the water consumption associated with IRmodels. Water is a vital
resource in this context as it is used for the operation and cooling
of energy production systems (i.e., the power plants that provide
energy to the data center) and the cooling of data centers in which
models are trained and operated. As water scarcity and drought pe-
riods become increasingly pressing global issues [3, 29, 33, 34, 41],
it is essential to evaluate the water consumption of IR models along
with their energy consumption and CO2 emissions, to ensure sus-
tainable research and operation.

This paper aims to raise awareness about the water consumption
of powerful IR models, providing a comprehensive view of their
environmental impact. First, we summarize the current state of
energy consumption and carbon dioxide emissions in IR research
and the green IR agenda put forward in previous work. Next, we
discuss the various factors contributing to water consumption in
the context of IR models, examining both off-site and on-site con-
sumption aspects. We then move to how water consumption can
be measured. Finally, we supplement existing energy consumption
estimates of popular IR models with water consumption estimates,
and we empirically probe factors that influence water consumption.

By incorporating water consumption alongside energy consump-
tion and carbon dioxide emissions, this paper aims to promote a
broader understanding of the environmental impact of IR research
and operation. We encourage researchers and practitioners to con-
sider these factors in their work, ultimately contributing to a more
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sustainable and responsible approach to developing, researching
and deploying IR models.

2 BACKGROUND AND RELATEDWORK
The following gives an overview of the current state of Green AI &
IR and the importance of measuring water in how it contributes to
creating meaningful measures of ‘Green-ness’.

2.1 Green AI and Green IR
Concerns about energy consumption in the broader field of artificial
intelligence (AI) were heightened after the study from Strubell et al.
[35], which was one of the first to highlight the high energy usage
and emissions produced by large language models. This study and
others before it [2, 4] have fueled a growing interest in measuring
the energy consumption of research in related fields such as natural
language processing (NLP) and machine learning (ML). Within the
field of IR, the environmental impacts of technology at scale have
been a concern for at least a decade [12].

In general, there are two approaches one can take to quanti-
fying energy and emissions: Life Cycle Assessment (LCA) [14]
and power consumption measurement. The ISO standard defines
LCA as the “compilation and evaluation of the inputs, outputs and
the potential environmental impacts of a product system through-
out its life cycle” [1]. Due to its complexity and the number of
resources required [12], most studies choose to measure power
consumption directly. Indeed, since then, there have been many
efforts to measure energy and emissions for IR systems [5, 7–11].
Given the explosion in neural models for search based on trans-
formers [13, 15, 17, 20, 23, 24, 30, 40, 43, 44], quantifying the energy
and emissions of these systems is more critical than ever.

Recently, Scells et al. [32] proposed a framework for minimizing
energy usage and emissions for IR with their ‘reduce, reuse, recy-
cle’ methodology. For each concept, they outlined several ways IR
practitioners can lower their energy usage: for example, one can re-
duce the number of experiments they do; reuse existing pre-trained
models for experiments; or recycle existing pre-trained models that
were initially trained on one task but apply them to another task.
Like many other studies before it, this research focused on energy
consumption. In this paper, we extend this methodology to consider
not only the energy consumption (and, by extension, emissions)
but also the water consumption. To the best of our knowledge, our
paper marks the first study to investigate the water consumption
of IR systems, and neural IR models in particular.

2.2 Water Consumption in Data Centers
Water consumption in data centers predominantly occurs due to
two distinct factors: first, as an indirect consequence of generating
electricity, typically through thermoelectric power sources, and sec-
ond, as a direct requirement for cooling systems that help maintain
the ideal operating environment. These factors are pictured in Fig-
ure 1. While water use for electricity generation is well known, its
usage for data center cooling is likely less known to IR researchers.

The increase in model complexity associated with the latest ad-
vancement of AI models has seen the need for increasingly powerful
servers. High-performance servers generate significant amounts
of heat, which must be dissipated to maintain optimal operating
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Figure 1: Water usage in a data center and a power plant.

conditions. Traditional cooling systems often rely on water, using
evaporative cooling towers or chilled water systems to maintain
temperatures. Consequently, the water consumption of these data
centers can be significant [26]. For example, Google has reported
that its data centers consumed 11.4 billion liters of water in the
financial year 2017 and 15.8 billion in FY20181. The water used
to cool data centers is often potable, thus reducing the amount of
drinking water available to the population.

The type of cooling system plays a crucial role in determining
water usage. For instance, air-cooled systems typically consume
less water than water-cooled systems but may be less efficient at
dissipating heat. Moreover, the local climate can also impact water
consumption; data centers in hot and arid regions may require
more water for cooling than those in cooler climates [18]. Finally,
seasons and time of day also impact water consumption related
to data centers cooling. The water used in data centers’ cooling
towers is consumed in two ways:
• through evaporation, which occurs as part of the process of cool-
ing, where hot water returning from the data center is sprayed
through water distribution nozzles across a cooling fill and then
collected at the bottom of the cooling tower in a cold water basis,
from where water is pumped back into the chiller connected to
the data center’s air conditioning; and

• through the process of blow down, where thewater in the pipelines
of the data center is flushed. This process of draining water is re-
quired to reduce salt, impurity, algae and bacteria concentration,
which can cause damage to the cooling system. The higher the
water quality, the less blow down of water.
Related to the blow down process is the concept of cycles of

concentration 𝑆 : the number of times the dissolved minerals and
salts in the circulating water are concentrated compared to the
concentration in the makeup water. This concept represents how
efficiently the cooling tower system uses and recycles water by
measuring how much water is evaporated and concentrated before
discharge. A higher 𝑆 value indicates that the cooling tower is more
efficient in reusing water, reducing overall water consumption and

1https://services.google.com/fh/files/misc/google_2019-environmental-report.pdf.
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discharge. However, note that as the cycles of concentration in-
crease, so does the concentration of dissolved solids, which can lead
to scaling, corrosion, and other issues within the cooling system.

Water consumption related to data centers operations has at-
tracted increasing attention from the research community [6, 18, 26],
also in the context of complex and computationally-demanding AI
models [19, 39]. In particular, Li et al. [19] provide a framework
to estimate the water consumption of AI models and investigate
the water consumption associated with the training of large lan-
guage models such as LaMDA [36]. We build on the framework of
Li et al. [19] to investigate the water consumption related to several
common IR models.

3 WATER CONSUMPTION ANALYSIS
In the following sections, we detail a methodology for estimating
the water consumption of IR models. We then complement the
power and emissions estimates of several well-known IR methods
from Scells et al. [32] with the water consumption of these methods.
We finally break down these methods’ on-site and off-site costs and
analyze the influence of factors such as water quality, time of year
and of the day on water consumption.

3.1 Quantifying Water Consumption in IR
We build upon the framework for measuring the water efficiency
of AI models set by Li et al. [19]. In this framework, the water
consumption𝑊 of a modelM is measured as the sum of the water
consumed for the cooling of the data center (on-site water consump-
tion,𝑊𝑜𝑛 (M)) and of the water consumed for the production of
the electricity used by the data center (off-site water consumption,
𝑊𝑜 𝑓 𝑓 (M)):

𝑊 (M) =𝑊𝑜𝑛 (M) +𝑊𝑜 𝑓 𝑓 (M) (1)
The on-site water consumption can then be calculated with re-

spect to the energy 𝑒 (M) used by the IR model and the water usage
effectiveness𝑊𝑈𝐸𝑜𝑛 of the data center. These can be parameter-
ized by the time energy and water usage occur. This is because
water consumption has daytime and season dependencies. Recall
that the water is used to cool the data center. In times of the day
that are hotter, e.g. in the early afternoons as opposed to the early
mornings, or the hotter seasons, e.g., summer as opposed to winter,
water consumption will be higher.

We account for this when computing𝑊𝑈𝐸𝑜𝑛 , which then is
dependent from 𝑒 (𝑡,M) and𝑊𝑈𝐸𝑜𝑛 (𝑡), where 𝑡 represents a spe-
cific time interval (e.g., these quantities could be computed for a
15 minutes interval). Note furthermore that the power consump-
tion of a model may not be constant across all time intervals (e.g.,
𝑒 (𝑡 = 𝑖,M) ≠ 𝑒 (𝑡 = 𝑗,M)): this may be the case for example for a
model that uses primarily CPU computing in a time interval and
GPU computing in another time interval. Given that the water
usage effectiveness𝑊𝑈𝐸𝑜𝑛 of the data center depends on time,
running different parts of an IR model pipeline, e.g., different times
of the day, may give rise to different water utilization profiles. Given
this, the on-site water consumption is calculated as follows:

𝑊𝑜𝑛 (M) =
𝑇∑︁
𝑡=1

𝑒 (M, 𝑡) ·𝑊𝑈𝐸𝑜𝑛 (𝑡) (2)

Water usage effectiveness𝑊𝑈𝐸𝑜𝑛 (𝑡) typically depends on the
cycles of concentration 𝑆 associated with the blow down of water
used in the cooling tower and the outside wet-bulb temperature𝑇𝑤 .

The cycles of concentration for a cooling tower depend on the ac-
tual cooling tower specifications and the water quality. As detailed
in Section 2.2, high-quality water, i.e. with few residues and impu-
rities, requires fewer blow downs of the cooling tower’s pipelines.
For example, we were able to acquire the cycles of concentration
required by two cooling towers of different brands and installed in
different locations of the same city in Brisbane, Australia – cooling
tower 𝐴, located at a private organization, had 𝑆𝐴 = 2.25, while
cooling tower 𝐵, located at a public hospital, had 𝑆𝐵 = 1.33.

The wet-bulb temperature is the temperature that is measured
by a thermometer exposed to the air, and its bulb is covered with a
wet wick, which is then exposed to moving air. As water evaporates
from the wick, it cools the thermometer bulb, and the temperature
reading reflects the cooling effect. Note that also 𝑇𝑤 is dependent
on time (of day and season) as it is influenced by factors such as
the air temperature, humidity, air pressure, and wind speed. Thus
it can be parameterized accordingly, i.e. 𝑇𝑤 (𝑡). For example, for
Brisbane where the previous two cooling towers are located, the
mean annual 9am 𝑇𝑤 (𝑡 = 9𝑎𝑚) = 63.5𝐹 (min: 53.6F, max: 71.4F),
while the mean 3pm 𝑇𝑤 (𝑡 = 3𝑝𝑚) = 65.3𝐹 (min: 57F, max: 72.3F).

We adopt the same modeling of a cooling tower used by Li et al.
[19] to compute𝑊𝑈𝐸𝑜𝑛 (𝑡):

𝑊𝑈𝐸𝑜𝑛 (𝑡) =
𝑆

𝑆 − 1 ·
(
6·10−5·𝑇𝑤 (𝑡)3−0.01·𝑇𝑤 (𝑡)2+0.61·𝑇𝑤 (𝑡)−10.40

)
(3)

Next we consider how to compute the off-site water consumption
𝑊𝑜 𝑓 𝑓 (M). The off-site water consumption is related to the cooling
of the power plant, e.g., in the case of a nuclear or coal power station,
and/or the actual production of the electricity, e.g., in the case of a
hydroelectric power station. The off-site water consumption could
also be null for some electricity production technologies, as it is the
case for example for solar power generation. Similarly to the on-
site power consumption, also the calculation of𝑊𝑜 𝑓 𝑓 (M) depends
on the energy 𝑒 (M) used by the IR model, and the water usage
effectiveness𝑊𝑈𝐸𝑜 𝑓 𝑓 –which in this case refers to the power plant
that generates the electricity used by the data center. However, the
energy used by the IR model needs to be regulated by the relative
amount of energy used by the data center to sustain that power
utilization. In other words: for every kWh of electricity used by
the components of a server for computation2, additional energy is
used by the data center to power e.g., the storage infrastructure, the
power units, the pumps and ventilators used in the cooling system,
etc.. This additional consumption is captured by the Power Usage
Effectiveness coefficient of the data center, 𝑃𝑈𝐸. As for the on-site
water consumption, all these quantities can be parameterized with
respect to time. Thus, off-site water consumption is calculated as:

𝑊𝑜 𝑓 𝑓 (M) =
𝑇∑︁
𝑡=1

𝑒 (M, 𝑡) · 𝑃𝑈𝐸 (𝑡) ·𝑊𝑈𝐸𝑜 𝑓 𝑓 (𝑡) (4)

2These that can be typically measured are CPU, GPU and memory consumption.



As mentioned,𝑊𝑈𝐸𝑜 𝑓 𝑓 (𝑡) is dependent on the power plant(s)
used to generate electricity – and the electricity used may be pro-
duced by a mix of fuels (e.g., nuclear, coal, solar). This is modeled
as follows. Be 𝑏𝑘 (𝑡) the amount of electricity generated using fuel
type 𝑘 , and 𝐸𝑊 𝐼𝐹𝑘 (𝑡) be the Energy Water Intensity Factor, mea-
sured in L/kWh, for fuel type 𝑘 . Fro example, typical values for coal
are 𝐸𝑊 𝐼𝐹𝑐𝑜𝑎𝑙 (𝑡) = 1.7, and for nuclear 𝐸𝑊 𝐼𝐹𝑛𝑢𝑐𝑙𝑒𝑎𝑟 (𝑡) = 2.3 [19].
Then:

𝑊𝑈𝐸𝑜 𝑓 𝑓 (𝑡) =
∑
𝑘 𝑏𝑘 (𝑡) · 𝐸𝑊 𝐼𝐹𝑘 (𝑡)∑

𝑘 𝑏𝑘 (𝑡)
(5)

Note that typically, and also in the empirical analysis below,
values of 𝑘 and 𝐸𝑊 𝐼𝐹𝑘 (𝑡) are not known to the researchers for
small time intervals 𝑡 : instead, they are more likely able to source
an estimate of these values based on yearly reporting from their
electricity supplier or government authorities.

3.2 Water Efficiency of Common IR Models
Table 1 reports the water consumption of common IR models com-
puted according to Equation 1 for experiments performed on theMS
MARCO-v1 dataset [27]3. Along with water consumption, we also
report running time, power consumption and emissions produced
– these values are sourced from Scells et al. [32]. To compute water
consumption, we used the energy consumption reported by Scells
et al. [32]; note however that in Equation 1 𝑒 (M) is the Power value
in the table divided by the 𝑃𝑈𝐸 of the data center. Furthermore, we
used the annual mean wet-bulb temperature at 3pm in Brisbane
(65.3 F), cycles of concentration 𝑆 = 2.25, a 𝑃𝑈𝐸 of 1.894, and a com-
bined off-site water usage effectiveness of𝑊𝑈𝐸𝑜 𝑓 𝑓 = 1.8, which is
representative of that in Brisbane. These results assume time and
season in which models are run do not influence water consump-
tion; we consider the impact of these factors in Section 3.2. The
results show an obvious correspondence between power consump-
tion, emissions, and water consumption: as power consumption
increases so do emissions and water consumption.

Figure 2 breaks down the water consumption of the considered
IR models with respect to on-site and off-site consumption. This
figure shows that for each model, under the considering values of
the parameters, water consumption is dominated by the need of
cooling the data center. This result is highly influenced by (1) the
specifications and quality of the cooling tower, which influence
the second part of Equation 3, (2) the quality of the water used for
cooling, which in turns influences the cycles of concentrations 𝑆 ,
(3) and the wet-bulb temperature measured at the location of the
data center, which in turns is influenced by both the local climate
and the season and time of day in which computations occur.

3.3 Effect of Water Quality on Water Usage
We demonstrate the influence of cycles of concentration, and thus
water quality, on on-site water consumption through an example.
Recall that the worse the water quality, the more the sediments in
the water and thus the need to blow down (i.e. “flush”) the water
pipelines of the cooling system of the data center to avoid damages.
3See Scells et al. [32] for the settings of these experiments. Note, we do not re-run
their experiments: we use their values for our water consumption models.
4Which is the 𝑃𝑈𝐸 of our reference data center, and also that used by Scells et al. [32].

Table 1: Power consumption, emissions and water consump-
tion of IR research over the lifetime of a possible experiment
across a number of common IRmodels. Stages in the pipeline
(i.e., model training, indexing, and searching) are reported
individually; cumulative values across the full pipeline are
shown in bold. Running time, power and emission values are
taken from Scells et al. [32].

Experiment Running
Time
(hours)

Power
(kWh)

Emissions
(kgCO2e)

Water
(L)

BM25 Indexing 0.0809 0.0021 0.0016 0.0108
BM25 Search 0.0025 0.00006 0.00005 0.0003

0.0834 0.0022 0.0017 0.0113

LambdaMART Training 0.0285 0.0008 0.0006 0.0041
LambdaMART Rerank + BM25 0.0628 0.0017 0.0013 0.0087

0.0914 0.0024 0.0019 0.0123

DPR Training 16.46 6.74 5.16 34.5910
DPR Indexing 2.42 1.04 0.7958 5.3375
DPR Search 0.4141 0.0002 0.0001 0.0010

19.3 7.78 5.96 39.9285

monoBERT Training 57.43 57.95 44.38 297.4107
monoBERT Rerank + BM25 23.18 10.8 8.27 55.4277

80.61 68.75 52.65 352.8384

TILDEv2 Training 15.73 6.91 5.29 35.4635
TILDEv2 Indexing 9.44 4.74 3.63 24.3266
TILDEv2 Rerank + BM25 0.0247 0.0007 0.0005 0.0036
TILDE Expansion 11.89 1.04 0.7958 5.3375

37.08 12.69 9.72 65.1276

docTquery Expansion 760.48 169.06 129.49 867.6489

785.68 180.71 138.41 927.4389

uniCOIL Training 17.97 7.24 5.54 37.1571
uniCOIL Indexing 3.66 1.95 1.49 10.0078
uniCOIL Search 0.8966 0.0237 0.0182 0.1216
TILDE Expansion 11.89 1.04 0.7958 5.3375

34.41 10.25 7.85 52.6050

docTquery Expansion 760.48 169.06 129.49 867.6489

783.01 178.28 136.54 914.9677

For this example we have considered the TILDEv2 model [43]
with docTquery expansion [28]; other models show similar trends,
although this was the IR model with the largest water consumption
in the results of Table 1. We have computed the on-site water
consumption (𝑊𝑜𝑛) using the values of cycle of concentrations
from the two cooling towers A and B mentioned in Section 3.1,
where A was located in a private organization and B in a public
hospital (𝑆𝐴 = 2.25, 𝑆𝐵 = 1.33): cooling tower 𝐴 is more water
efficient than 𝐵. We keep all other values the same as those used for
Table 1. For site 𝐴, we obtain𝑊𝑜𝑛,𝐴 (𝑇 𝐼𝐿𝐷𝐸𝑣2) = 602.1609 L, while
for site 𝐵, we obtain𝑊𝑜𝑛,𝐵 (𝑇 𝐼𝐿𝐷𝐸𝑣2) = 1261.3524 L. This example
materializes the large impact a lower water quality can have on the
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Figure 2: Analysis of on-site and off-site water consumption
across different IR models.
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Figure 3: Water consumption of the considered IR models
throughout a year for Brisbane, Australia (thus November-
February is summer).

amount of water consumed by a data center. The use of high quality
water supplies however constitutes an issue per se. First, chemicals
could be used to improve water quality: but these add extra costs
in the running of the data center operation. These chemicals may
also have secondary negative effects on the environment if released
into natural water-streams at blow down. Chemicals typically used
in cooling towers in fact include corrosion and scale inhibitors,
algaecides and biocides, and pH adjusters, which may have harmful
impact on the environment [16] – though we note environmental
friendly products do exist, e.g., green corrosion inhibitors [16].
Second, potable water, i.e. drinkingwater, is typically of high quality
– using this water for cooling means subtracting drinking water
to the local population, which is problematic in areas with scarce
access to sources of potable water.
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Figure 4: Comparison between on-site water consumption
𝑊𝑜𝑛 for TILDEv2 with docTquery expansion obtained when
running the model in the morning (9am) vs. in the afternoon
(3pm). The analysis is performed for each month of the year.

3.4 Effect of Time on Water Usage
Next we discussion the effect of time of day and season on water
consumption. This effect is due to the rise of the wet-bulb tempera-
ture that is typically associated to the warmer part of the day, e.g.,
afternoons, or to the warmer seasons, e.g., summer. This can be
observed clearly in Equation 3: as the temperature 𝑇𝑤 (𝑡) raises, so
does𝑊𝑈𝐸𝑜𝑛 (𝑡) and thus consequently𝑊𝑜𝑛 .

To materialize the effect of temperature changes on (on-site)
water consumption, in Figure 3 we report the total water usage𝑊
of each IR model throughout the year. We base these results on
the same settings used to generate the estimations in Table 1, but
instead of taking the annual mean wet-bulb 3pm temperature for
Brisbane, we consider themonthly meanwet-bulb 3pm temperature.
Note that Brisbane is in the Southern Hemisphere, and thus summer
is in the period December through to February, and winter is in the
period June through August. The figure shows that for the most
“thirsty” IR model considered, TILDEv2 with docTquery expansion,
water consumption can vary of 192 liters: running this model in
the hottest month consumes 23% more water than running it in the
coolest month. On the other hand, the impact of season on water
consumption for models like BM25 and LambdaMART is minimal
(at least in absolute terms).

We perform a similar analysis for showing the impact of time
of day. For this, we limit the analysis to the model with highest
water consumption, TILDEv2 with docTquery expansion, as an
example. We consider two times of the day, 9am and 3pm, and
the month with largest difference in mean temperatures at these
times in Brisbane: July. The mean 9am wet-bulb temperature in
July is 53.6F, and at 3pm is 57.02F: thus the difference is 3.42F. As-
suming all other variables are set to the values used for Table 1,
the on-site water consumption of TILDEv2 with docTquery ex-
pansion at 9am is𝑊𝑜𝑛 (𝑇 𝐼𝐿𝐷𝐸𝑣2, 𝐽𝑢𝑙𝑦@9𝑎𝑚) = 482.90, while at
3pm is 𝑊𝑜𝑛 (𝑇 𝐼𝐿𝐷𝐸𝑣2, 𝐽𝑢𝑙𝑦@3𝑝𝑚) = 515.1: a difference of 32.2
liters. Figure 4 extends the comparison between the mean 9am and
3pm on-site water consumption for TILDEv2 with docTquery to
all months (for each month, we consider the mean over the last 16



years5). The figure suggests that for Brisbane the difference in wa-
ter consumption obtained when running the model at 9am instead
than at 3pm is higher during the winter months, than during the
summer months. This is because in Brisbane temperature differ-
ences between mornings and afternoons are higher in winter than
in summer. We note that these findings are location-dependent.

4 DISCUSSION AND CONCLUSION
AI and IR models naturally consume electricity and, as a result, may
produce emissions. However, electricity alone is not the only limited
resource these models consume. In training or operating IR mod-
els, water usage is an important factor to take into consideration,
especially when based on increasingly computationally demanding
large neural models. Globally, water is increasingly becoming a
scarce resource, especially high-quality, potable water6.

A reduction in energy or emissions does not necessarily translate
into a reduction in water consumption. This is because, in the
context of IR models, water consumption does not only depend
on the amount of energy consumed (and thus heat generated that
needs to be dissipated through cooling) but also on the temperature,
humidity and wind conditions of the environment, which naturally
fluctuate with times of day and seasons. This aspect is important
because it suggests that strategies that reduce CO2 emissions do not
necessarily obtain a reduction of water consumption: indeed, the
opposite may occur. This is the case for example for solar power:
while this method of electricity production emits no CO2, it is most
efficient in times of the day and seasons with high solar irrigation –
which in turn are associatedwith high temperatures and thus higher
quantity of water required to cool the data centers (Section 3.4).

With this paper, we aim to raise awareness about the water con-
sumption associated with large IR models so that practitioners can
be conscious of their impact and take steps to minimize water con-
sumption. To this end, we have presented a method for quantifying
the water usage of IR methods and compared several models in
terms of not only their energy usage and emissions production, but
also in terms of their water usage. We have shown that while water
consumption of keyword-matching and learning to rank models
is minimal, the water consumption associated with neural models
can be significant. The analysis we have provided in this paper
comes with limitations, first and foremost because power, water
and emissions calculations were performed using estimated energy
usage and average temperatures.

To further help the IR community to be conscious of the impact
of their research on the environment and monitor their energy
and water consumption along with their CO2 emissions, we have
developed: (1) a web-based calculator where researchers can con-
veniently insert the parameters associated to their models and data
centers, and compute CO2 emissions and water consumption, and
(2) a plug-in for the Weights & Biases telemetry tool7 that allows
tracking energy and water consumption, and CO2 as experiments
are run. This material along with other resources associated to the
paper are available at https://github.com/ielab/green-ir.
5Due to the availability of this data from the local meteorology agency.
6https://www.un.org/en/climatechange/science/climate-issues/water.
7https://wandb.ai/, an MLOps tool for performance visualization and experimental
tracking of machine learning models.
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