
Pseudo-Relevance Feedback with Dense Retrievers in Pyserini
Hang Li∗

University of Queensland
Brisbane, Australia
hang.li@uq.edu.au

Shengyao Zhuang∗
University of Queensland

Brisbane, Australia
s.zhuang@uq.edu.au

Xueguang Ma
University of Waterloo

Waterloo, Canada
x93ma@uwaterloo.ca

Jimmy Lin
University of Waterloo

Waterloo, Canada
jimmylin@uwaterloo.ca

Guido Zuccon
University of Queensland

Brisbane, Australia
g.zuccon@uq.edu.au

ABSTRACT
Transformer-based Dense Retrievers (DRs) are attracting extensive
attention because of their eectiveness paired with high eciency.
In this context, few Pseudo-Relevance Feedback (PRF) methods
applied to DRs have emerged. However, the absence of a general
framework for performing PRF with DRs has made the empirical
evaluation, comparison and reproduction of these methods challen-
ging and time-consuming, especially across dierent DR models
developed by dierent teams of researchers.

To tackle this and speed up research into PRF methods for DRs,
we showcase a new PRF framework that we implemented as a
feature in Pyserini – an easy-to-use Python Information Retrieval
toolkit. In particular, we leverage Pyserini’s DR framework and
expand it with a PRF framework that abstracts the PRF process
away from the specic DR model used. This new functionality
in Pyserini allows to easily experiment with PRF methods across
dierent DR models and datasets. Our framework comes with a
number of recently proposed PRFmethods built into it. Experiments
within our framework show that this new PRF feature improves
the eectiveness of the DR models currently available in Pyserini.

KEYWORDS
Pyserini, Dense Retriever, Pseudo-Relevance Feedback
ACM Reference Format:
Hang Li, Shengyao Zhuang, Xueguang Ma, Jimmy Lin, and Guido Zuccon.
2022. Pseudo-Relevance Feedback with Dense Retrievers in Pyserini. In
Australasian Document Computing Symposium (ADCS ’22), December 15–16,
2022, Adelaide, SA, Australia. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3572960.3572982

1 INTRODUCTION
Recent advances in Information Retrieval have seen the introduc-
tion of Dense Retrievers (DRs), where a transformer-based deep
∗Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specic permission
and/or a fee. Request permissions from permissions@acm.org.
ADCS ’22, December 15–16, 2022, Adelaide, SA, Australia
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0021-7/22/12. . . $15.00
https://doi.org/10.1145/3572960.3572982

language model (e.g., BERT [3]) is used to separately encode quer-
ies and documents in low dimensional embeddings (dense vectors).
These embeddings are then used as representation for retrieval via
vector similarity search. Compared to cross-encoder-based rankers,
such as monoBERT [17], DRs provide at times lower eectiveness,
but also a consistently much lower query latency, making their use
into actual, real-time retrieval applications more feasible than for
cross-encoders. To support research on DRs, the Pyserini toolkit
has recently added DRs among the methods it makes available for
retrieval [11], providing easy-to-use dense vector search APIs. In
addition the toolkit allows easy integration and reproduction of
newly proposed DR methods by simply exploiting the model check-
point of the new DR for generating a dense index, which is then
added to the Pyserini DR model base.

Pseudo-Relevance Feedback (PRF) methods such as Rocchio [19]
and RM3 [15] are known to often improve the eectiveness of
traditional bag-of-words (BoW) retrievers such as BM25. On the
other hand, recent pre-trained transformer-based dense retrievers
(DRs) have shown higher eectiveness than BoW retrievers, while
at the same time achieving similar query latency [12]. It is then
natural to consider performing PRF in the context of DRs [8–10, 20,
21, 23]. With the eld moving forward, challenges and diculties
have become clear: For researchers devising new PRF methods,
investigating the eectiveness of their method in the context of DR
is hard. This is because each DR method is developed, released, and
maintained by dierent groups, with dierent practices and code
standards. Hence, in order to test the eectiveness of a new PRF
method, extra eorts will be paid on integrating DR models and
code written by dierent groups.

In this context, we present a new PRF framework that imple-
mented as a new feature in Pyserini [11] – a popular DR Python
toolkit. Pyserini has integrated dierent DR models and provided
easy-to-use dense vector search APIs. For newly invented DR mod-
els, an access to the model checkpoint is sucient to generate a
new dense index and add it into the Pyserini DR model base. Given
these advantages provided by Pyserini in support of DR research,
we believe it is necessary and benecial to develop a PRF feature for
Pyserini which allows a PRF method designed for DRs to be easily
tested across dierent DRs implemented in Pyserini, or vice versa,
which allows a new DR model to be easily tested across dierent
PRF methods.

Figure 1 illustrates the proposed PRF framework for DRs in
Pyserini. The framework comprises two rounds of DR search. In

https://doi.org/10.1145/3572960.3572982
https://doi.org/10.1145/3572960.3572982
https://doi.org/10.1145/3572960.3572982

ADCS ’22, December 15–16, 2022, Adelaide, SA, Australia Hang Li, Shengyao Zhuang, Xueguang Ma, Jimmy Lin, and Guido Zuccon

the rst round, the QueryEncoder class rst encodes the query
text into a vector. Then, the SimpleDenseSearcher class performs
a standard dense vector similarity search and returns the top-k
nearest neighbors (documents/passages). In the second round, the
DenseVectorPrf class takes the returned documents as input and
creates a new query vector based on the selected PRF method.
Finally, the SimpleDenseSearcher performs another search but
with the new query vector, producing as output the nal ranking.

To test and validate our PRF framework within Pyserini, in this
paper we describe our implementation of two DR-based PRF meth-
ods, Vector-Based PRF with Average and Vector-Based PRF with Roc-
chio, based on the original techniques by Li et al. [9]. We rst con-
rm that it is possible to reproduce these methods and the related
results from the original paper within our Pyserini PRF framework.
In particular, we test the eectiveness of the PRF methods with
the DR models and datasets that are made available o-the-shelf
by Pyserini, including some that were not considered by Li et al..
Our results show that the eectiveness of all DR models currently
in Pyserini is improved when using the newly implemented PRF
feature. We then note that this nding complements the results ori-
ginally reported by Li et al., and this was easily obtainable largely
because Pyserini already integrates a wide array of DR models
and common datasets. Finally, our PRF framework can be further
expanded by implementing other PRF methods designed for DRs.

2 DENSE RETRIEVER PRF
Next, we briey describe the two DR-based PRF methods we imple-
mented [9]; we refer the reader to Li et al. [9] for details.

Vector-Based PRF with Average. The vector of the original query
𝑉 (𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) and the vectors of the top-𝑘 pseudo feedback passages
𝑉 (𝑝1), ...,𝑉 (𝑝𝑘) are averaged to form the new query vector𝑉𝑄𝑛𝑒𝑤

:

𝑉𝑄𝑛𝑒𝑤
= 𝐴𝑣𝑔(𝑉 (𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙),𝑉 (𝑝1), ...,𝑉 (𝑝𝑘)) (1)

By doing so, the signal provided by the original query is treated
as being equivalent to that from any of the top-𝑘 feedback passages.

Vector-Based PRF with Rocchio. This method is an adaptation of
the original Rocchio method for relevance feedback [19] to the
context of deep dense language models. Here, the original query
vector is modied by moving it towards the average of the top-𝑘
feedback passage vectors by assigning dierent weights to query
and (the combination of) feedback passages, thus controlling the
contribution of each component towards the nal score. Note that
negative feedback is omitted, but it is possible to model this too
following the original formulation from Rocchio [19]. Formally, the
new query vector is obtained as:

𝑉𝑄𝑛𝑒𝑤
= 𝛼 ∗𝑉 (𝑄𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) + 𝛽 ∗𝐴𝑣𝑔(𝑉 (𝑝1), ...,𝑉 (𝑝𝑘)) (2)

where 𝛼 controls the weight assigned to the original query vector
and 𝛽 the weight assigned to the PRF signal.

3 DR-BASED PRF FRAMEWORK IN PYSERINI
The PRF framework for DRs we integrated into Pyserini consists of
three coremodules: the SimpleDenseSearcher, the QueryEncoder,
and the DenseVectorPrf. They are respectively responsible for
encoding the query text into vectors based on dierent DR mod-
els (QueryEncoder), retrieving the PRF candidates from the index

Code Sample 1: Average PRF implementation in Pyserini.
1 # get all the PRF candidate vectors

2 all_candidate_embs = [item.vectors for item in prf_candidates]

3
4 # stack query vector and PRF candidate vectors

5 # then get mean as new query vector

6 new_emb_qs = np.mean(

7 np.vstack((emb_qs[0], all_candidate_embs)), axis=0)

8
9 # return new query vector as numpy array

10 new_emb_qs = np.array([new_emb_qs]).astype('float32')

Code Sample 2: Rocchio PRF implementation in Pyserini.
1 # get all the PRF candidate vectors

2 all_candidate_embs = [item.vectors for item in prf_candidates]

3
4 # get weighted mean of candidate vectors

5 weighted_mean_doc_embs = rocchio_beta * np.mean(

6 all_candidate_embs, axis=0)

7
8 # get weighted query vector

9 weighted_query_embs = rocchio_alpha * emb_qs[0]

10
11 # get sum of the weighted vectors

12 new_emb_q = np.sum(
13 np.vstack((weighted_query_embs, weighted_mean_doc_embs)), axis=0)

14
15 # return new query vector as numpy array

16 new_emb_q = np.array([new_emb_q]).astype('float32')

(SimpleDenseSearcher), and performing either Average PRF or
Rocchio PRF (DenseVectorPrf). These are implemented as abstract
classes, making it easy to extend the framework to other PRF meth-
ods and DR models. Next, we describe the implementation of these
classes and provide examples of how to run DR-based PRF within
Pyserini.

3.1 Modules and Conguration
The PRF module in Pyserini consists of three main components,
which covers the full process of encoding query text, retrieving
PRF candidates, performing PRF, generates the new query, and nal
retrieval.

Figure 1 illustrates the interaction between the three main mod-
ules in our PRF framework. The QueryEncoder module is respons-
ible for encoding the query text into vectors. The SimpleDenseSearcher
module is responsible for the retrieval of the candidate documents
to be sent for PRF, and for the nal retrieval using the newly gen-
erated PRF query. The DenseVectorPrf module takes the top-𝑘
results produced by the rst round of SimpleDenseSearcher and
it produces the vector for the new PRF query: how this is done
depends on the specic PRF method used.
QueryEncoder. The QueryEncoder module is an abstract class in
Pyserini, which is responsible for encoding the raw query text into
vectors for later retrieval of PRF candidates and generation of the
new query vector. Currently the QueryEncoder module supports
encoding with ANCE [22], DPR [7], TCT-ColBERT V1 [13], TCT-
ColBERT V2 [14], DistillBERT KD [4], DistillBERT Balanced [5],
and SBERT [18]. Dierent DR models can be selected either pro-
grammatically or via command line arguments.
SimpleDenseSearcher.The SimpleDenseSearchermodule is also
an abstract class in Pyserini, which, in the rst round of retrieval,

Pseudo-Relevance Feedback with Dense Retrievers in Pyserini ADCS ’22, December 15–16, 2022, Adelaide, SA, Australia

Figure 1: The proposed Pyserini Dense Retriever-based Pseudo-Relevance Feedback framework.

is responsible for retrieving the top-𝑘 (PRF depth) candidates to
be used as PRF signal. To do this, it uses the query encoded by
QueryEncoder. In the second round of retrieval, this module is
responsible for retrieving the nal results using the new query gen-
erated by the DenseVectorPrfmodule. SimpleDenseSearcher re-
quires a Faiss [6] index as one of the inputs and it performs the
pairwise dot product between the query and document representa-
tions, for each document in the index. This module can also work
with any of the DRs already supported by Pyserini.
DenseVectorPrf. The DenseVectorPrf module, also an abstract
class, is responsible for performing the actual PRF process and
generate the new query vector representation. Currently, the Av-
erage PRF and Rocchio PRF approaches [9] are supported by the
DenseVectorPrf module. For the Average approach (Eq. 1), we
rst stack the query vector and the PRF candidate vectors. Then
we compute the average of the stacked vectors and obtain the nal
vector representing the new PRF query, as shown in Code Sample 1.
For Rocchio, we rst stack the PRF candidate vectors and compute
their mean. Then we linearly interpolate the query vector and the
average PRF candidate vector, using the interpolation parameters
𝛼 and 𝛽 (Eq. 2), as shown in Code Sample 2.

3.2 Usage
Our PRF module is easy to use, as illustrated by Code Sample 3,
which executes Average PRF on top of ANCE using batch retrieval
mode, and Code Sample 4, which executes Rocchio PRF on top of
ANCE. The dsearch command accepts the following inputs:

• --topics: the path to the raw query text le;
• --index: the path to the pre-built Faiss index;
• --encoder: the DR model’s name, or the path to a local model
checkpoint;

• --output: the path to where the result le should be saved;
• --batch-size: the number of queries to be batched for group
processing;

• --threads: the maximum number of threads to use;
• --prf-depth: the number of candidate vectors for PRF;
• --prf-method: species the PRF method, which currently can
either be avg or rocchio;

• --rocchio-alpha: the value of the parameter 𝛼 in Rocchio PRF
(default: 𝛼 = 0.9);

Code Sample 3: Usage of Average PRF in Pyserini with batch
processing.

1 $ python -m pyserini.dsearch --topics dl19-passage \

2 --index msmarco-passage-ance-bf \

3 --encoder castorini/ance-msmarco-passage \

4 --output test_ance_avg_prf3_batch.res \

5 --batch-size 64 \

6 --threads 12 \

7 --prf-depth 3 \

8 --prf-method avg

Code Sample 4: Usage of Rocchio PRF in Pyserini with batch
processing.

1 $ python -m pyserini.dsearch --topics dl19-passage \

2 --index msmarco-passage-ance-bf \

3 --encoder castorini/ance-msmarco-passage \

4 --output test_ance_rocchio_prf5_batch.res \

5 --batch-size 64 \

6 --threads 12 \

7 --prf-depth 5 \

8 --prf-method rocchio \

9 --rocchio-alpha 0.4 \

10 --rocchio-beta 0.6

• --rocchio-beta: the value of the parameter 𝛽 in Rocchio PRF
(default: 𝛽 = 0.1);

Note, if --batch-size and --threads are both 1, then the PRF
module executes queries in sequential order; if --batch-size is >
1, then the PRF module executes queries in batch mode.

Because Pyserini ships already with numerous pre-built dense
indexes, along with raw and encoded queries for common datasets
used in research, the application of these PRF methods to such data-
set is fairly trivial: one just needs to modify the input parameters
accordingly to the chosen dataset and the required queries, dense
indexes, and encoded queries are automatically downloaded. This
removes the need for the individual researcher to build the dense
index, or even identify its location among other’s repositories –
thus ultimately accelerating the reproduction of experiments.

ADCS ’22, December 15–16, 2022, Adelaide, SA, Australia Hang Li, Shengyao Zhuang, Xueguang Ma, Jimmy Lin, and Guido Zuccon

Table 1: Comparison between DR with and without PRF on two popular TREC DL datasets. All PRF parameters are not tuned:
PRF depth =3; for Rocchio 𝛼 = 0.4, 𝛽 = 0.6. Bold indicates the best results w.r.t. each base model.

TREC DL 2019 TREC DL 2020

Model PRF MAP nDCG@100 Recall@1000 MAP nDCG@100 Recall@1000

BM25 - 0.3773 0.5018 0.7389 0.2856 0.4902 0.7863
BM25 RM3 0.4270 0.5286 0.7882 0.3019 0.5077 0.8217
BM25 + BERT-base - 0.4827 0.6426 0.7389 0.4926 0.6473 0.7863

ANCE [22]
Original 0.3710 0.5540 0.7554 0.4076 0.5679 0.7764
Average PRF 0.4247 0.5937 0.7739 0.4325 0.5793 0.7909
Rocchio 0.4211 0.5928 0.7825 0.4315 0.5800 0.7957

TCT-ColBERT V1 [13]
Original 0.3906 0.5730 0.7916 0.4290 0.5826 0.8181
Average PRF 0.4336 0.6119 0.8230 0.4725 0.6101 0.8667
Rocchio 0.4463 0.6143 0.8393 0.4625 0.6056 0.8576

TCT-ColBERT V2 [14]
Original 0.4269 0.6129 0.8342 0.4717 0.6200 0.8407
Average PRF 0.4766 0.6487 0.8574 0.4701 0.6209 0.8739
Rocchio 0.4709 0.6435 0.8496 0.4819 0.6324 0.8760

DistillBERT KD [4]
Original 0.3759 0.5765 0.6853 0.3909 0.5728 0.6893
Average PRF 0.4362 0.6217 0.7180 0.3955 0.5755 0.7279
Rocchio 0.4378 0.6189 0.7291 0.3990 0.5760 0.7222

DistillBERT Balanced [5]
Original 0.4761 0.6360 0.7826 0.4755 0.6346 0.8009
Average PRF 0.5057 0.6526 0.8054 0.4873 0.6449 0.8392
Rocchio 0.5249 0.6684 0.8352 0.4846 0.6470 0.8262

SBERT [18]
Original 0.4060 0.5985 0.7872 0.4124 0.5734 0.7937
Average PRF 0.4354 0.6149 0.7937 0.4258 0.5781 0.8169
Rocchio 0.4371 0.6149 0.7941 0.4342 0.5851 0.8226

ADORE [24]
Original 0.4188 0.5946 0.7759 0.4418 0.5949 0.8151
Average PRF 0.4672 0.6263 0.7890 0.4706 0.6176 0.8323
Rocchio PRF 0.4760 0.6193 0.8251 0.4760 0.6193 0.8251

4 EMPIRICAL VALIDATION
4.1 Experimental Setup
To validate the correct implementation of the DR-based PRF meth-
ods in Pyserini, we replicate the experiments of Li et al. [9] per-
formed on the TREC DL 2019 [1] and TREC DL 2020 [2] collections.
Both use the MS MARCO Passage Ranking [16] dataset. As dis-
cussed in Li et al. [9], the original MS MARCO passage ranking
dev queries and judgements are not suitable for evaluating PRF
methods as there is only one judged relevant passage per query on
average. Furthermore, often this relevant passage is part of the PRF
signal. Because of this, we are not include results on this dataset in
the main part of the paper. Nevertheless, we evaluate the methods
on the dev queries of the MS MARCO dataset for completeness and
report these results in Appendix 5.

Training is not required for our PRF methods: it can directly
be applied to any dense retriever. We considere the following DR
models, which are readily available in Pyserini: ANCE [22], TCT-
COlBERT V1 [13], TCT-COlBERT V2 [14], DistillBERT KD [4],
DistillBERT Balanced [5], SBERT [18] and ADORE [24]. Of these,
Li et al. [9] only experimented with ANCE.

Any of these models can be directly used with the two classes
SimpleDenseSearcher and DenseVectorPrfwithin Pyserini: each
individual DR uses a dierent on-the-y QueryEncoder within
SimpleDenseSearcher to encode the query text at inference time.
PRF parameters are not tuned and are shared across all DRs models.
For comparison as baselines, we also include BM25, BM25+RM3,
and BM25 + BERT-base [17] along with the DR results without PRF.

Eectiveness of all methods is measured with MAP, nDCG@100,
and Recall@1000, according to common TREC DL practice. The
experiments were executed on a 2019 MacBook Pro with 2.4 GHz
8-Core Intel Core i9 CPU and 64GB memory; no GPU was used at
inference time, the batch size was set to 64, with 12 threads. The
dense indexes were pre-built oine using Faiss [6].

4.2 Results
Experiment results for TREC 2019 and 2020 are reported in Table 1.
Results for DR-based PRF methods can be replicated using Code
Samples 3 and 4 by replacing the parameters corresponding to
topics and encoders.

We rst examine the results obtained using the ANCE dense
retriever, as this setting corresponds to that studied by Li et al. [9]
in the context of PRF. We conrm we were able to reproduce these

Pseudo-Relevance Feedback with Dense Retrievers in Pyserini ADCS ’22, December 15–16, 2022, Adelaide, SA, Australia

results with our new Pyserini dense PRF feature – and that the use
of PRF improves ANCE’s eectiveness. In addition, we tested Li
et al. [9]’s PRF methods using our new Pyserini PRF feature and the
other DRs made available by the toolkit. Similar to ANCE, we found
that PRF improves the DRs eectiveness: this is in both TREC DL
datasets, except Average with TCT-ColBERT V2 on TREC DL 2020
MAP. Recall@1000 was improved the most by PRF: this is desirable,
as commonly DRs form the rst stage of a multi-stage retrieval
pipeline – and high recall is required for a rst stage method. Re-
markably, (1) these results were obtaining without tuning the PRF
parameters, (2) PRF improved the eectiveness also of strong DRs
such as DistillBERT Balanced, which, with PRF, can now outper-
form the BM25 + BERT-base two-stage reranker across all measures
on TREC DL 2019, and for Recall@1000 on TREC DL 2020.

As for query latency, with PRF the time consumed for a single
query (e.g., ANCE with PRF: 395ms) is slightly lower than twice
the original retrieval time (ANCE: 209ms). The second round of
retrieval (i.e. the PRF) is slightly faster than the rst because it does
not need to perform the query encoding: the query generated by
the PRF is a vector. We note this fairly low latency (comparable,
if not lower than BM25+RM3 for long feedback inputs) makes
this PRF framework ecient and eective – and it can serve as a
"free boost" to all DR models. Although we only demonstrate this
PRF framework with default parameter settings, researchers can
easily conduct grid search, or other hyper-parameter optimisation
methods, to identify the best settings for their context; this can
be achieved by simply modify the hyper-parameter values in the
command lines.

5 CONCLUSIONS
Reproducing the results reported in research papers is often a hard
task; an even harder task is integrating existing methods with
newly proposed ones. In this paper we have provided a new fea-
ture for Pyserini that aims to make it easier to reproduce results
and integrate new methods in the context of recent advances in
Pseudo-Relevance Feedback with Dense Retrievers. We have fur-
ther demonstrated this new feature by implementing two recently
proposed DR-based PRF methods [9] and reproducing their results.
In addition, we exploited the extensive set of DR methods and data-
sets already available in Pyserini to further extend the empirical
evaluation of the PRF methods to DRs and datasets not studied in
the original work of Li et al. [9]. The empirical results provide a
novel nding: these PRF methods deliver improved eectiveness
over non-PRF runs regardless of the DR model used or the dataset
studied. This means that the PRF feature showcased here provides a
"free boost" to any DR – just like RM3 often does for BM25. Finally,
the implemented PRF framework is easily adaptable and extendable,
allowing others to integrate and study alternative DR-based PRF
methods, thus lowering the barriers for reproducing existing and
investigating new methods in this context.

Acknowledgements.
This research was supported in part by the Grain Research and
Development Corporation project AgAsk (UOQ2003-009RTX) and
the Natural Sciences and Engineering Research Council (NSERC) of
Canada. Computational resources were provided by The University
of Queensland, Compute Ontario and Compute Canada.

REFERENCES
[1] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M

Voorhees. 2020. Overview of the TREC 2019 Deep Learning Track. In TREC.
[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M

Voorhees. 2021. Overview of the TREC 2020 Deep Learning Track. In TREC.
[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

[4] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2020. Improving ecient neural ranking models with cross-
architecture knowledge distillation. arXiv preprint arXiv:2010.02666 (2020).

[5] Sebastian Hofstätter, Sheng-Chieh Lin, Jheng-Hong Yang, Jimmy Lin, and Allan
Hanbury. 2021. Eciently Teaching an Eective Dense Retriever with Balanced
Topic Aware Sampling. In SIGIR.

[6] Je Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data (2019).

[7] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In EMNLP.

[8] Hang Li, Ahmed Mourad, Bevan Koopman, and Guido Zuccon. 2022. How Does
Feedback Signal Quality Impact Eectiveness of Pseudo Relevance Feedback for
Passage Retrieval. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’22). Association for
Computing Machinery, New York, NY, USA, 2154–2158. https://doi.org/10.1145/
3477495.3531822

[9] Hang Li, Ahmed Mourad, Shengyao Zhuang, Bevan Koopman, and Guido Zuc-
con. 2021. Pseudo Relevance Feedback with Deep Language Models and Dense
Retrievers: Successes and Pitfalls. arXiv preprint arXiv:2108.11044 (2021).

[10] Hang Li, Shengyao Zhuang, Ahmed Mourad, Xueguang Ma, Jimmy Lin, and
Guido Zuccon. 2022. Improving Query Representations for Dense Retrieval with
Pseudo Relevance Feedback: A Reproducibility Study. In European Conference on
Information Retrieval. Springer, 599–612.

[11] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: A Python Toolkit for Reproducible Inform-
ation Retrieval Research with Sparse and Dense Representations. In SIGIR.

[12] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2020. Pretrained transformers
for text ranking: Bert and beyond. arXiv preprint arXiv:2010.06467 (2020).

[13] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2020. Distilling dense
representations for ranking using tightly-coupled teachers. arXiv preprint
arXiv:2010.11386 (2020).

[14] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-batch negatives
for knowledge distillation with tightly-coupled teachers for dense retrieval. In
RepL4NLP-2021. 163–173.

[15] Yuanhua Lv and ChengXiang Zhai. 2009. A comparative study of methods for
estimating query language models with pseudo feedback. In CIKM. 1895–1898.

[16] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human Generated Machine
Reading Comprehension Dataset. In Workshop on Cognitive Computing at NIPS.

[17] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage
document ranking with bert. arXiv preprint arXiv:1910.14424 (2019).

[18] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP-IJCNLP.

[19] J.J. Rocchio. 1971. Relevance Feedback in Information Retrieval. In The SMART
Retrieval System - Experiments in Automatic Document Processing. 313–323.

[20] Xiao Wang, Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. 2021. Pseudo-
Relevance Feedback for Multiple Representation Dense Retrieval. In ICTIR.

[21] Xiao Wang, Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. 2022. ColBERT-
PRF: Semantic Pseudo-Relevance Feedback for Dense Passage and Document
Retrieval. ACM Transactions on the Web (2022).

[22] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In ICLR.

[23] HongChien Yu, Chenyan Xiong, and Jamie Callan. 2021. Improving Query
Representations for Dense Retrieval with Pseudo Relevance Feedback. In CIKM.

[24] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping
Ma. 2021. Optimizing dense retrieval model training with hard negatives. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1503–1512.

APPENDIX A
In Table 2 we report the results obtained by PRF models on the dev
queries of the MS MARCO passage ranking dataset. We note that
the characteristics of the relevance judgements of this dataset make
results on this dataset not particularly insightful for evaluating

https://doi.org/10.1145/3477495.3531822
https://doi.org/10.1145/3477495.3531822

ADCS ’22, December 15–16, 2022, Adelaide, SA, Australia Hang Li, Shengyao Zhuang, Xueguang Ma, Jimmy Lin, and Guido Zuccon

Table 2: Comparison between DR with and without PRF on the dev queries set of the MS MARCO dataset. All PRF parameters
are not tuned: PRF depth =3 for average; for Rocchio 𝛼 = 0.4, 𝛽 = 0.6, PRF depth = 5. Bold indicates the best results w.r.t. each
base model.

Model Method MAP nDCG@10 nDCG@100 Recall@1000

ANCE
Original 0.3362 0.4457 0.9587 0.3302
Average PRF 0.3133 0.4247 0.9490 0.3073
Rocchio PRF 0.3115 0.4250 0.9545 0.3048

TCT-ColBERT V1
Original 0.3416 0.4514 0.9640 0.3350
Average PRF 0.2882 0.4014 0.9452 0.2816
Rocchio PRF 0.2809 0.3988 0.9543 0.2740

TCT-ColBERT V2 HN+
Original 0.3644 0.4750 0.9695 0.3590
Average PRF 0.3183 0.4325 0.9585 0.2995
Rocchio PRF 0.3190 0.4360 0.9659 0.2933

DistillBERT KD
Original 0.3309 0.4391 0.9553 0.3250
Average PRF 0.2830 0.3940 0.9325 0.2470
Rocchio PRF 0.2787 0.3937 0.9432 0.2716

DistillBERT Balanced
Original 0.3515 0.4651 0.9771 0.3443
Average PRF 0.2979 0.4151 0.9613 0.2630
Rocchio PRF 0.2969 0.4178 0.9702 0.2897

SBERT
Original 0.3373 0.4453 0.9558 0.3314
Average PRF 0.3094 0.4183 0.9446 0.3035
Rocchio PRF 0.3034 0.4157 0.9529 0.2974

ADORE
Original 0.3523 0.4637 0.9688 0.3466
Average PRF 0.3188 0.4330 0.9583 0.3127
Rocchio PRF 0.3209 0.4376 0.9669 0.3145

PRF methods. This is because this dataset contains on average
only one judged relevant passage per query, and this this relevant
passage is often part of the PRF signal. This characteristic of the
dataset may explain why on the dev queries of the MS MARCO
passage ranking dataset PRF methods do not provide improvements
in eectiveness compared to their corresponding dense retrievers –

instead, they actually often provide sensible losses. This is unlike
the main results reported in Section 4.2 which were obtained on
the TREC DL collections. These collections use the same passages
of MS MARCO, along with queries from the same logs used to
created the queries in MS MARCO [1, 2], but consider a larger pool
of relevance assessments for each query.

	Abstract
	1 Introduction
	2 Dense Retriever PRF
	3 DR-based PRF Framework in Pyserini
	3.1 Modules and Configuration
	3.2 Usage

	4 Empirical validation
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions
	References

