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ABSTRACT Visual data exploration is ubiquitous in nearly every industry and organization to support
discovering data-driven actionable insights. However, unlocking those insights requires analysts to manually
construct a prohibitively large number of aggregate queries and visually explore their results, looking for
those valuable and insightful visualizations. Such a challenge naturally motivated the development of novel
solutions that automate the visual exploration process, and recommend to analysts those particular queries
that best visualize their data and reveal interesting actionable insights. In such automated solutions, there
is a clear need for providing analysts with a diversified and concise set of recommended visualizations,
which cover and represent a large combinatorial high-dimensional space of possible visualizations. However,
directly incorporating existing diversification methods leads to a ‘‘process-first-diversify-next’’ approach,
in which all possible data visualizations are generated first through executing a large number of aggregate
queries. To address this challenge andminimize the incurred query processing costs, in this work, we propose
novel optimization techniques for the efficient diversification of recommended insightful visualizations. The
key idea underlying our proposed techniques is to identify and eliminate the processing of a large number of
low-utility insignificant visualizations. Meanwhile, for the potentially high-utility insightful visualizations,
shared multi-query optimization techniques are proposed for further reduction in data processing cost.
Our extensive experimental evaluation on real datasets demonstrates the performance gains provided by
our proposed techniques, in terms of minimizing the query processing cost (i.e., efficiency), as well as
maximizing the quality of recommendations (i.e., effectiveness).

INDEX TERMS Data exploration, visual analytics, recommendation diversification.

I. INTRODUCTION
Visual data exploration is an essential step in the data science
pipeline, in which analysts examine datasets up-close to
extract valuable insights (e.g., [1], [2], [3], [4]). This process
has been traditionally performed manually, where the analyst
interactively applies various exploratory queries (such as
SQL-based filtering, aggregation, joins, etc.). The results
of those queries are presented as data-driven visualizations
(e.g., bar or line charts, scatter plots, etc.). The analyst then
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examines those visualizations looking for insights, which
are used as a springboard to decide their next analytical
query. In that process, analysts need to manually construct
a prohibitively large number of queries and visually explore
their results looking for insights, which is clearly an ad-hoc
and labor-intensive process.

The challenges mentioned above motivated multiple
research efforts that focused on automatic recommendation
for data exploration. That is, recommender systems dedicated
to provide the user with suggestions for specific, high-utility
exploratory queries [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14]. Such systems are data-driven (also known as
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discovery-driven) systems, which use heuristic notions of
interestingness and employ them in the recommendation.
The main idea underlying those solutions is to automatically
generate all possible exploratory queries of the data, generate
their corresponding visualizations, and recommend the top-k
interesting ones. Meanwhile, the interestingness of a query is
quantified using some utility metric over its result.
A large body of work provides strong evidence that a

deviation-based formulation of utility is able to provide
analysts with interesting visualizations that highlight some
of the particular trends of the analyzed datasets (e.g.,
[6], [7], [8], [12], [13], [14], [15]). Basically, such data-
driven deviation-based systems recommend visualizations
based on reference data or reference visualizations. The
underlying premise is that a visualization is likely to be
interesting if it displays a large deviation from some reference
(e.g., complete dataset, another dataset, or the rest of the
database). Particularly, the deviation-based metric measures
the distance between each aggregate view generated from the
reference dataset (i.e. reference view) and the view generated
from the analyzed data subset (i.e. target view). That is,
the deviation-based metric measures the pairwise distance
between all the possible aggregations over the selected data
and recommends the ones with highest deviation between
target and reference view. The intuition is that a view with
high deviation (i.e., importance score) is expected to reveal
some important insights that are specific to the data subset
under analysis.

However, one drawback of that utility-based approach is
that it often recommends similar views, leaving the data
analyst with a limited amount of gained insights. To address
that limitation, in our previous work [11], we proposed the
DiVE schemes to eliminate redundancy and provide full
coverage of the possible insights to be discovered by the
recommendation process. Towards this, the DiVE schemes
employ a hybrid objective utility function, which captures
both the importance together with the diversity of the insights
revealed by the recommended visualizations.

However, our work in [11] shows that directly applying
diversification methods to insight recommendation leads
to a ‘‘process-first-diversify-next’’ approach [16], in which
all possible data visualizations are generated first through
executing a large number of aggregate queries. To address
this challenge and minimize the incurred query processing
cost, in [11], we have proposed pruning-based techniques
for minimizing the number of processed aggregate queries.
Particularly, the main underlying idea is to leverage the
properties of both the importance and diversity to elim-
inate the processing of a large number of low-utility
views.

In this work, we expand on our original DiVE scheme
along two orthogonal dimensions, namely, 1) providing
high-quality recommendations, and 2) supporting scalable
shared processing of aggregate views. Specifically, our
original DiVE scheme partially relies on an adaptive pruning
technique that samples the space of possible views to

estimate the maximum possible utility score to be achieved
by any view. Naturally, that sampling method introduces
some approximation to the recommendation process, and
in turn, the quality of recommendation becomes dependent
on the sampling size. Hence, in this work, we expand on
that method, by introducing a rectifying algorithm that is
integrated in our DiVE scheme and allows to automatically
adapt the sample size as necessary to improve the quality
of recommendation. Our rectifying algorithm employs back-
tracking and caching mechanisms that allow for minimizing
the query processing costs, while maximizing the accuracy
of recommendations (Section IV-B). Additionally, to further
reduce query processing time, we propose a sharing-based
optimization, which processes different overlapping aggre-
gate views simultaneously at a minimal cost. Specifically,
instead of each query underlying a view being processed
independently, such optimization leverages the similarity
between those queries, and utilize multi-query processing,
in which the execution of overlapping queries is shared
(Section V-A).

Further, we note that both query pruning and multi-query
optimization aim to reduce the query processing cost
incurred during the recommendation process, but they
achieve this goal through different approaches. Particularly,
query/view pruning relies on eliminating the processing of
some queries, while multi-query optimization is based on
the simultaneous processing of many overlapping queries.
Consequently, we propose a novel hybrid approach that
combines both adaptive pruning with sharing-based opti-
mization. Specifically, our approach utilizes adaptive pruning
to identify high-utility views, which are then grouped and
processed simultaneously using sharing-based optimization.
Our hybrid approach provides two benefits: 1) eliminating
the processing of some queries when early termination is
reached through pruning, and 2) reducing the processing
time of unpruned queries by utilizing shared processing
(Section V-B). Finally, we conduct an extensive experimental
evaluation on real datasets, comparing the performance and
illustrating the benefits achieved by our proposed algorithms
(Section VII).

The main contributions of this work are summarized as
follows:
• We formulate the problem of recommending views
that are both important and diverse based on a
multi-objective utility function (Section II).

• We introduce our DiVE scheme, which employs novel
pruning techniques that leverage the salient charac-
teristics of our objective function to minimize the
query processing cost incurred in view recommenda-
tion while maximizing the quality of recommendation
(Section III).

• We propose an approximate version of DiVE, which
employs adaptive sampling to further reduce the solution
search space, together with a rectifying mechanism that
automatically tunes the sampling size to maximize the
quality of recommendation (Section IV).
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• We extend DiVE to incorporate a sharing-based opti-
mization, which allows processesing different overlap-
ping aggregate views simultaneously at a minimal cost
(Section V).

• We conduct an extensive experimental evaluation on real
datasets, which compares the performance of various
algorithms and demonstrates the benefits achieved by
our proposed methods (Section VII).

II. PRELIMINARIES
In this section, we first present a motivating example, which
demonstrates the need for diversification in the process of
visualization recommendation (Sec. II-A). Then, we present
our model for recommending diversified visualizations
(Sec. II-B), together with a formulation of the problem
addressed in this work (Sec. II-C).

A. MOTIVATING EXAMPLE
Consider a data analyst trying to gain some insights into
the Diabetes 130-US hospitals dataset [17]. The dataset
represents 10 years (1999-2008) of clinical care at 130 US
hospitals and includes 100,000 diabetes patients. The data
contains multiple attributes such as gender, age, race, time
in the hospital, number of outpatients, inpatients, etc.

Since many studies have been conducted to understand
the interplay between the diabetes disease and some
demographic factors, such as gender, race, etc. (e.g.,
[18], [19]), our analyst might also be interested in exploring
the Diabetes dataset to find some interesting data-driven
insights along that direction. For instance, the analyst
might choose to conduct a comparison between Female
African American diabetes patients versus Female Caucasian
diabetes patients. To accomplish this, the analyst writes
an SQL query that selects female diabetes patients who
are African American (i.e., race=African American
AND gender=Female) as the target data subset for
analysis, and the female Caucasian diabetes patients as
the reference data subset (i.e., race = Caucasian
AND gender = Female). Since the analyzed data
contains different dimensions (e.g., age, race, gender ,
readmitted) and different measures (e.g., time_in_hospital,
number_inpatient , number_outpatient), it can be challeng-
ing for the analyst to manually select the combinations of
dimensions and measures that reveal interesting insights.
Hence, to automatically recommend interesting bar chart
visualizations, a recommendation system (e.g., [6], [7], [8],
[12], [13], [14], [15]) would apply different SQL aggregate
functions to the views generated from all possible pairwise
combinations of dimensions and measures, then the most
important views are presented to the analyst.

Figure 1 shows the top-1, top-2, and top-3 recom-
mended views according to the deviation-based metric (e.g.,
[6], [7], [8], [12], [13], [14], [15]). Interestingly, all three
visualizations show a clear discrepancy between the two
patients groups across the different age brackets. For instance,
consider the top-1 recommendation shown in Figure 1a,

FIGURE 1. Top three recommended visualizations.

which plots the normalized distribution of the number of
diabetic patients in each patient group across the different
age brackets. As the visualization shows, for Caucasian
females, the majority of diabetic patients are above the age
of 50, with a high concentration of patients in the [70-80]
age range. However, for African American patients, the
distribution of patients by age looks significantly different.
Particularly, Figure 1a shows that the distribution of patients
over age follows more of a normal distribution, in which
the highest concentration of patients is in the rather younger
[38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48] age
range. That discrepancy is further underscored in the top-2
and top-3 recommended visualizations shown in Figure 1b
and 1c, which are based on the num_of _days_in_hospital
measure.

However, comparing all three recommended visualiza-
tions, it is easy to notice their similarity. Particularly, all
three convey more or less the same insight, they are based
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on the same dimensional attribute (i.e., patient age), and
two of which are also based on the same measure attribute
(i.e., number of days in hospital between admission and
discharge). Despite that obvious similarity between those
different visualizations, they are still recommended together
to the analyst due to the high deviation between the target and
reference views exhibited by each visualization.

B. RECOMMENDING DIVERSIFIED VISUALIZATIONS
Similar to existing work (e.g., [3], [6], [7], [8], [20]),
we assume a visual data exploration session, which starts
with an analyst submitting a query Q on a multi-dimensional
database DB. Essentially, Q selects a subset DQ from DB
by specifying a query predicate T . Hence, Q is defined
as: Q: SELECT * FROM DB WHERE T;. For exam-
ple, Q: SELECT * FROM diabetes_db WHERE race=
African American;

Ideally, the analyst would like to generate some aggregate
views (e.g., bar charts or scatter plots) that unearth some
valuable insights from the selected subset DQ. However,
achieving that goal is only possible if the analyst knows
exactly what to look for!

Hence, the goal of existing works, such as [3], [5], [6], [7],
[8], [20], [21], [22], and [23], is to automatically recommend
such aggregate views. To specify and recommend such
views, we consider a multi-dimensional database DB, which
consists of a set of dimensional attributes A and a set
of measure attributes M. Also, let F be a set of possible
aggregate functions over the measure attributes. Hence,
specifying different combinations of dimension and measure
attributes with various aggregate functions, generates a set of
possible views V over the selected dataset DQ. Particularly,
an aggregate view Vi is specified by a tuple < Ai, Mi, Fi >,
where Ai ∈ A, Mi ∈M, and Fi ∈ F.
Clearly, manually looking for insights in each view Vi ∈

V is a labor-intensive and time-consuming process. Such
challenge motivated multiple research efforts that focused
on automatic recommendation of views based on some
metrics that capture the utility of a recommended view
(e.g., [5], [6], [7], [8], [9], [10], [21], [22], [23], [24], [25]).
Towards that, data-driven metrics are employed to capture
the interestingness or importance of a recommended view.
Recent case studies have shown that a deviation-based metric
is effective in providing analysts with important views
that highlight some of the particular trends of the analyzed
datasets (e.g., [6], [7], [8], [11], [15], [22]).

1) CONTENT-DRIVEN IMPORTANCE
Essentially, the deviation-based metric compares an aggre-
gate view generated from the selected subset dataset DQ (i.e.,
target view Vi(DQ)) to the same view if generated from a
reference dataset DR (i.e., reference view Vi(DR)). That is,
it measures the deviation between the result of Vi(DQ) and
that of Vi(DR). Consequently, from a visualization point of
view, that deviation is a content-basedmetric that captures the

FIGURE 2. Content vs. Context of views.

difference between the content of the visualization generated
by Vi(DQ) vs. the visual content of Vi(DR). The premise
underlying the deviation-based metric is that a view Vi
that results in a high deviation is expected to reveal some
important insights that are very particular to the subset DQ
and distinguish it from the patterns in DR. For instance,
the visualization of number of diabtes patients vs. race in
different age extracted from DQ are fundamentally different
from number of diabtes patients vs. race in different age
extracted from DR.

To calculate the content-based deviation, each target
view Vi(DQ) is normalized into a probability distribution
P[Vi(DQ)] and similarly, each reference view into P[Vi(DR)].
Then, the importance score of Vi is measured in terms of the
distance between P[Vi(DQ)] and P[Vi(DR)] (as illustrated in
Figure 2), and is simply defined as:

I (Vi) = dist
(
P

[
Vi(DQ)

]
,P [Vi(DR)]

)
(1)

where I (Vi) is the importance score ofVi and dist is a distance
function. Similar to existing work [6], [7], [8], [20], we adopt
a Euclidian distance, but other distance measures are also
applicable (Earth Mover’s distance, K-L divergence, etc.).

2) CONTEXT-DRIVEN SIMILARITY
While recommending views based on their importance has
been shown to reveal some interesting insight, it also
suffers from the drawback of recommending similar and
redundant views, which leaves the data analyst with a limited
scope of possible insights. As illustrated, Figure 1 shows
recommended visualizations that basically reveal the same
insight.

To address that limitation, in this work we posit that
employing diversification techniques (e.g., [16], [26], [27],
[28], [29], [30], [31], [32]) in the process of view recom-
mendation allows eliminating that redundancy and provides
a good and concise coverage of the possible insights to be
discovered.

Diversity has been well known and widely used in
recommendation systems for maximizing information gain
and minimizing redundancy (e.g., [29], [30], [31], [33]). At a
high level, diversity essentially measures how different (i.e.,
diverse) are the individual data objects within a set. It is
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important to notice that central to that computation is some
notion of distance measure between data objects.

Meanwhile, our previous work [11] was the first to
consider diversity in the context of aggregate data visualiza-
tions. Particularly, in [11] we propose a metric to quantify
the (dis)similarity between the distinct features of different
visualizations. As discussed in [11], our metric is based on
considering the query underlying each view (i.e., the query
executed to create the view). Hence, in addition to the data-
driven content-based deviation metric, we also adopt a query-
driven context-based deviation metric as shown in Figure 2.

Particularly, in addition to the content of a view Vi which is
described by its probability distribution (i.e.,P(Vi)) as defined
in Sec. II), we also consider the context of the view E(Vi),
which is defined in terms of the query underlying Vi as:
E(Vi) = {Ai,Mi,Fi}.
Such definition of view context leads to a special

case of the existing work on query recommendation
[34], [35], [36], in which the normalized distance between
two queries is simply measured using the Jaccard simi-
larity measure. Hence, the Jaccard similarity between two
aggregate views Vi and Vj is measured as: Sim

(
Vi,Vj

)
=

| E(Vi) ∩ E(Vj) |
| E(Vi) ∪ E(Vj) |

.

We note that the jaccard similarity assigns equal weights
to each of the element in a set. Accordingly, when applied
to aggregate views, then two views with the same attribute
and different measure and aggregate function will have
the same similarity score as any other pair of views with
same measure but different attribute and aggregate function.
However, an analyst may consider two views with the
same attribute Ai more similar than two views with same
measure attribute Mi. To allow the analyst to specify such
preference, each contextual component of a view is associated
with a weight that specifies its impact on determining the
(dis)similarity between views. Specifically, for any view
Vi, let w(e) be the weight assigned to the eth context
component of E(Vi). Since, E(Vi) is a set of three components
{Ai,Mi,Fi}, then

∑3
e=1 w(e) = 1. Accordingly, the similarity

between any two views Vi and Vj is measured as:

J (Vi,Vj) =

∑
e∈E(Vi)∩E(Vj) w(e)∑
e∈E(Vi)∪E(Vj) w(e)

Consequently, the context-based deviation between Vi and
Vj is calculated as:

D
(
Vi,Vj

)
= 1− Sim

(
Vi,Vj

)
(2)

3) HYBRID OBJECTIVE FUNCTION
Given the set of all possible views V, our goal is to
recommend set S ⊆ V, where |S| = k . Hence, to capture
the quality of recommendation, our hybrid objective function
is designed to consider both the importance and diversity of
the recommended views. As such, the importance score of S
is calculated as the average value of the importance measure
of each view in S, as given in Eq. 1. In particular, according

to Eq. 1 any distance metric can be used for computing
deviation, in this work, we utilize Euclidean distance as our
distance metric. Hence, the total importance score of S is

defined as: I (S) =
∑k

i=1
I (Vi)
Iu

,Vi ∈ S, where Iu is the upper

bound on the importance score for an individual view.
To compute that upper bound Iu, let Vi and Vj be our target

and reference views respectively with c categories and h is
for each category, then the squared Euclidean distance is:
dist2PVi,PVj =

∑c
h=1(PVi[h] − PVj[h])2, then dist2PVi,PVj =∑c

h=1 PVi[h]
2
+

∑c
h=1 PVj[h]

2
−2×

∑c
h=1(PVi[h]−PVj[h]).

The maximum value of the Euclidean distance is achieved
when the last term is zero and it results dist2PVi,PVj =∑c

h=1 PVi[h]
2
+

∑c
h=1 PVi[h]

2. In particular, the maximum
value Iu is only possible when for each category h either
PVi[h] or PVj[h] is zero. As the result, dist2PVi,PVj = 2 and

distPVi,PVj =
√
2. Thus, Iu =

√
2 is used to normalize the

average importance score for set S.
In order to achieve diversity when selecting a set of

objects, several diversity functions have been employed in the
literature, with special focus on the MaxMin and MaxSum
functions (e.g., [16], [27], [28], [29], [30], [31], [32]).
Particularly, the goal in MaxSum is to maximize the average
pairwise distance between the objects in a set, whereas in
MaxMin the goal is to maximize the minimum pairwise
distance between those objects. In this work, we consider both
notions of diversity when selecting a set of recommended
views.

Accordingly, given a distance metric D
(
Vi,Vj

)
, as given

in Eq. 2, the MaxSum diversity of a set S can be simply
measured as follows:

f (S,D) =
1

k (k − 1)

k∑
i=1

k∑
j>i

D
(
Vi,Vj

)
,Vi,Vj ∈ S.

Since the maximum context-based deviation between any
two views in Eq. 2 is 1.0, dividing the sum of distances
by k (k − 1) ensures that the diversity score of set S is
normalized and bounded by 1.0.

Different from MaxSum, recall that the objective of
MaxMin is to maximize the minimum context-based devi-
ation of a set S. Hence, the MaxMin diversity of a
set S can be simply measured as follows: f (S,D) =

min D
(
Vi,Vj

)
,Vi,Vj ∈ S, where S is the selected subset of

views and D
(
Vi,Vj

)
is the distance metric as given in Eq. 2.

C. PROBLEM DEFINITION
Putting it together, for a set of views S ⊆ V, our hybrid
objective function is formulated as the linear weighted
combination of the importance score, I (S) and diversity score
f (S,D), and is defined as:

O (S) = (1− λ)× I (S)+ λ× f (S,D) (3)

where 0 ≤ λ ≤ 1 is employed to control the preference given
to the importance and diversity components.
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Hence, our goal is to find an optimal set of views S, which
maximizes the objective function O (S), and is formally
defined as follows:
Definition 1 (RecommendingDiversifiedImportant Views):

Given a target subset DQ and a reference subset DR, the goal
is to recommend a set S ⊆ V, where |S| = k , and V is the
set of all possible target views, such that the overall hybrid
objective O (S) is maximized.

1) COST OF VISUALIZATION RECOMMENDATION
Exisiting research has shown that recommending aggre-
gate data visualizations based on data-driven content-
based deviation is a computationally expensive task
[6], [7], [8], [11], [20]. Moreover, integrating diversification
into the view recommendation problem, as described above,
further increases that computational cost. In particular,
the incurred processing cost includes the following two
components: 1) Query processing cost CQ: measured in
terms of the time needed to execute and compare all
the queries underlying the set of target views as well
as their corresponding reference views (i.e., content-
based deviation), and 2) View diversification cost CD:
measured in terms of the time needed to compute all the
pairwise distances between each pair of target views (i.e.,
context-based deviation). Consequently, the total cost CT
for recommending a set of views is simply defined as:
CT = CQ + CD.
In principle, traditional data diversification methods that

consider both relevance and diversity can be directly applied
in the context of our problem to maximize the objective
function defined in Eq. 3. However, those setting assume
that the relevance of an object is either given or requires
simple computation. To the contrary, in our setting for
view recommendation, the importance of a view is a
computationally expensive operation, which requires the
execution of a target and reference view. To address that
challenge and minimize the incurred query processing cost,
next we propose our DiVE scheme, which leverages the
properties of both the importance and diversity to prune a
large number of low-utility views, without compromising the
quality of recommendations.

III. THE DiVE SCHEMES
In our previous work [11], we have proposed the DiVE
scheme for maximizing our hybrid objective utility func-
tion outlined above, while minimizing the incurred query
processing cost. DiVE incorporates a set of different
algorithms, namely: DiVE-Greedy, DiVE-iSwap, and DiVE-
dSwap. Among those algorithms, DiVE-dSwap has been
shown to provide the best performance in terms of both
effectiveness and efficiency [11]. Hence, in this paper,
we propose further extensions for improving the performance
of our DiVE-dSwap method. For the sake of completeness,
and to facilitate explaining our new extensions, next we
briefly summarize the DiVE-dSwap method, as it was
proposed in [11].

Algorithm 1 DiVE-dSwap
Input: Set of views V and result set size k
Output: Result set S ⊆ V, |S| = k

1 S ← set of maximum diversity
2 X ← [V\S]
3 Ocurrent ← 0
4 improve← True
5 while improve = True do
6 for Xi in set X do
7 S ′← S
8 for Sj in set S do
9 if O

(
S ′

)
< O

(
S\Sj ∪ Xi

)
then

10 S ′← S\Sj ∪ Xi
11 end
12 end
13 if O

(
S ′

)
> O (S) then

14 S ← S ′

15 end
16 end
17 if O (S) > Ocurrent then
18 Ocurrent ← O (S)

19 improve← True
20 else
21 improve← False
22 end
23 end
24 return S

A. THE DiVE-dSwap SCHEME
Our DiVE-dSwap scheme falls under the local search type
of algorithms. In particular, a local search algorithm starts
out with a complete initial solution and then attempts to
find a better solution in the neighborhood of that initial
one. Like constructive algorithms, local search algorithms are
also widely used in solving optimization problems including
diversification. For instance, the Swap local search method
has been utilized to maximize diversity [28], [30], [32]. The
basic idea underlying DiVE-dSwap is to start with an initial
set S of size k and then iteratively modify the set S in order
to improve the value of the objective function O(S). In our
DiVE-dSwap, S is initialized with the k views that maximize
diversity. Then, DiVE-dSwap iteratively interchanged a view
from X to S (Algorithm 1 line 14) until no more views can be
swapped between X and S (Figure 3). To make that selection,
DiVE-dSwap assigns a score to each view in X , which is
based on the hybrid objective function O (S), as defined in
Eq. 3. Specifically, the utility score assigned to a view Xi ∈ X
is computed as:

U (Xi) = (1− λ)× I (Xi)+ λ× setDist (Xi, S\ Sj) (4)

setDist (Xi, S\ Sj) =
1

|S\Sj ∪ Xi|

∑|S\Sj∪Xi|
j=1

Vj∈S\Sj∪Xi

D
(
Vi,Vj

)
Thus, in each iteration, the view with highest utility score

is selected and interchanged to S, until no more views can be
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FIGURE 3. Pruning condition in DiVE-dSwap.

swapped between X and S, which is reached when no further
improvement is achieved in the value of O (Algorithm 1
line 17).

We note that the overall cost of DiVE-Swap is CT =
CQ + CD, where CQ is the query processing cost (i.e., data-
driven), and CD is the cost for computing Jaccard distances
(i.e., query-driven), as described in Sec. II. Clearly, CQ is
equal to the number of possible views and is O(n), where n
is the number of possible views, whereas CD can reach up to
O

(
kn2

)
, where k is the number of recommended views.

B. PRUNING FOR DiVE-dSwap
As described above, DiVE-dSwap execute all the underlying
queries for each view Xi ∈ X . However, only a small
fraction of those views is actually included in the final top-k
recommended set. Consequently, a significant amount of
query processing cost is incurred for generating low-utility
views. Thus, in this section, we propose efficient techniques
for pruning such low-utility views without incurring the high
cost for evaluating their importance score.

Recall that under DiVE-dSwap, in each iteration a view
Xi ∈ X is selected to replace a view Sj ∈ S. The criterion for
that selected view is to improveO (S). That is,O(S\Sj∪Xi) >

O(S). Hence, the task is to find that top-1 pair of views
< Xi, Sj > that provides the maximum improvement inO (S)

once interchanged. Without pruning, that requires iterating
through S and X simultaneously and computing O for each
pair, which requires processing and generating each view
in X . To avoid such expensive processing, we propose a view
pruning technique, which is described next, and illustrated in
Figure 3.

To enable view pruning, a list L is created for all possible
swap pairs < Xi, Sj >, where L is sorted based on the
diversity achieved if the swap is to be made (as shown in

Algorithm 2 Pruning Algorithm
Input: Set of views V and result set size k
Output: Result set S ⊆ V, |S| = k

1 S ← set of maximum diversity
2 X ← [V\S]
3 PI ← 0.80
4 O(S)← objective function of S (Eq. 3)
5 Īau ← AdaptivePruning(PI )
6 Function setDist(

[
Xi, S\Sj

]
):

7 diversity← D(Xi, S\Sj);
8 return diversity
9 End Function

10 L ←
[
Xi, S\Sj, setDist

[
Xi, S\Sj

]]
11 L ← sorted by setDist DESC
12 maxO(Xi, S\Sj)← (1− λ)× Īau + λ× setDist

[
Xi, S\Sj

]
13 Function AdaptivePruning(PI):
14 execute some views according to PI
15 if the number executed views satisfies PI then
16 Īau ← get the highest score of I
17 else
18 execute more views until PI is satisfied
19 Īau ← get the highest score of I
20 end
21 return Īau
22 End Function
23 while improve = True do
24 for Xi in set X do
25 S ′ ← S
26 for Sj in set S do
27 if O

(
S ′

)
< O

(
S\Sj ∪ Xi

)
then

28 S ′ ← S\Sj ∪ Xi
29 end
30 if maxO(Xi, S\Sj) < O (S) then
31 prune

[
Xi, S\Sj

]
32 end
33 if more views are executed then
34 Iau ← get the highest score of I
35 if Iau > Īau then
36 use Iau instead of Īu to calculate

maxO
37 if maxO(Xi, S\Sj) < O (S) then
38 prune

[
Xi, S\Sj

]
39 end
40 end
41 end
42 end
43 if O

(
S ′

)
> O (S) then

44 S ← S ′

45 end
46 end
47 if O (S) > Ocurrent then
48 Ocurrent ← O (S)

49 improve← True
50 else
51 improve← False
52 end
53 end
54 return S
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Figure 3). Particularly, L is sorted by setDist (Xi, S\ Sj),

where setDist (Xi, S\ Sj) =
1

|S\Sj ∪ Xi|

∑|S\Sj∪Xi|
j=1

Vj∈S\Sj∪Xi

D
(
Vi,Vj

)
(Algorithm 2 line 6-11). It is important to notice that up to
this point the only processing needed is to compute diversity
without any query execution to evaluate the importance
of any Xi. Given that setting, the task of finding the
best swap is clearly similar to top-k query processing, for
which numerous optimization techniques are proposed (e.g.,
[37], [38]). Particularly, to find the top-1 swap, each view Xi
is initially assigned an importance equal to the upper bound
Iu (Sec. II). In turn, the upper bound on O (S) achieved by
incorporating Xi is computed as: maxO(S\Sj ∪ Xi), which is
based on the actual diversity achieved by the swap, and the
upper bound on importance. As such, maxO(S\Sj ∪ Xi) is
compared against O(S), leading to one of the following two
cases: If maxO(S\Sj ∪ Xi) > O(S), then the swap <Xi, Sj >
can ‘‘potentially’’ improve O (S). Hence, at that stage the
view Xi needs to be generated in order to evaluate its actual
importance I (Xi). Otherwise, the pair <Xi, Sj> is pruned if:
maxO(S\Sj ∪ Xi) < O(S) (Algorithm 2 line 30-39).

As shown in Figure 3, the set S is initialized by k-most
distant views and in each iteration, the Sj is swapped with
Xi if maxO(S\Sj ∪ Xi) > O(S). Simply put, if the upper
bound maxO achieved by that swap is still less than the
current O(S), then the actual O(S\Sj ∪ Xi) is guaranteed to
be less than O(S) and the pair < Xi, Sj > can be safely
ignored and pruned. More importantly, since the L is sorted
by diversity, and if maxO(S\Sj ∪ Xi) < O(S), then the next
views are also guaranteed to provide no improvement and that
iteration of DiVE-dSwap reaches early termination. Hence,
for all the remaining views no query processing is needed,
which significantly reduces the overall cost. In Figure 3, the
views that have been pruned after early termination are shown
within a dotted rectangle.

IV. PREDICTIVE INTERVAL FOR ADAPTIVE BOUNDS
In general, the pruning schemes provided by DiVE-dSwap
rely on the fundamental idea of evaluating the upper bound
of the benefit provided by a view Vi towards the objective O.
If that maximum benefit is still not enough to consider Vi
to join S, then Vi is pruned and its query processing cost is
saved. Moreover, to evaluate that upper bound, DiVE-dSwap
computes the actual diversity offered by Vi and instead of
computing its actual importance I (Vi), it is substituted with
the maximum attainable importance score Iu.
Naturally, overestimating I (Vi) leads to overestimating the

importance of Vi and consequently limited pruning power is
achieved. Meanwhile, for most datasets, Iu as it is computed
in Sec. II is in fact an overestimation of the importance
achieved by any view Vi. Hence, our goal in this section
is to provide a tighter bound on I (Vi), which allows for
maximum pruning while maintaining the quality of the
solution. To address this challenge, we propose our method
DiVE-dSwap-Adaptive (Sec. IV-A), which is able to provide
a tighter upper bound on Iu by processing some sample views.

To further reduce the number of processed sample views
while providing that tighter bound, we additionally propose
DiVE-dSwap-Rectify(PI), which expands on the basic DiVE-
dSwap-Rectify by employing a novel rectifying mechanism
(Sec. IV-B).

A. ADAPTIVE PRUNING
In this section, we propose our adaptive pruning method,
DiVE-dSwap-Adaptive, which relies on estimating a tight
upper bound on the importance score of each view Vi.
Estimating such bound will in turn lead to more pruning
power than that achieved when the importance score of each
view is estimated as the maximum theoretical bound Iu (as
described in the previous section).

Recall, Iu the upper bound on deviation is the theoretical
maximum value of the distance between P[Vi(DR)] or
P[Vi(DQ)]. This maximum value is achieved when for each
category either in P[Vi(DR)] or P[Vi(DQ)] is zero. Hence, Iu
is a theoretical bound for the maximum importance achieved
by any view in any dataset. For most real datasets, however,
that condition is rarely satisfied and the actual upper bound,
denoted as Iau, is typically much smaller than Iu.
Meanwhile, a ‘‘hypothetical’’ pruning scheme that utilizes

that actual upper bound Iau is expected to deliver more
pruning power than the schemes using the theoretical upper
bound Iu, especially when Iau ≪ Iu. In practice, however,
that hypothetical scheme is not achievable since obtaining the
value Iau requires executing all the possible views, which is
clearly in conflict with the goal of pruning.

Accordingly, rather than using overestimated Iu or obtain-
ing the actual Iau, our goal is to estimate Iau with high accu-
racy and minimum number of query executions. In particular,
given the set of possible views V, the goal is to estimate the
maximum importance Īau given by some view inV. However,
estimating the maximum value of a population is known to
be a challenging problem, as opposed to estimating other
statistics such as average or sum [39].

Thus, instead of estimating Iau, we rely on non-parametric
predictive interval models to determine its value with
certain level of confidence without any assumption on the
population [39]. To apply that predictive model, some sample
views are executed and the maximum importance observed
in that sample is recorded as Īau. To determine the number
of samples, a Predictive Interval (PI ) is to be defined,

such that: PI =
(m− 1)
(m+ 1)

, where m is the number of

samples.
For instance, setting PI = 90% (i.e., PI 0.90), results

in m = 19. That is, after processing a set of 19 sample
views and setting Īau to the maximum importance observed
in that set, then Īau is actually higher than the importance
value of any unsampled view Vi with probability 90%.
Or the other way around, there is only a 10% chance that
the importance value of an unseen view Vi will be higher
than the maximum importance seen so far (i.e., Īau), which
renders Īau a tight upper bound on I (Vi) with 90% confidence.
Clearly, the higher the value of PI , the higher the accuracy
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FIGURE 4. The updating of upper bound in each iteration of
DiVE-dSwap-Adaptive(0.80).

of Īau, which also requires sampling (i.e., processing) more
views.

Figure 4 shows an example of augmenting our DiVE-
dSwap scheme with our proposed adaptive method with
PI = 80 (i.e., DiVE-dSwap-Adaptive(0.80). As the figure
shows, in the first iteration of DiVE-dSwap, the upper bound
on the importance of any view Vi is set to the theoretical
maximum attained importance Iu. However, going through
the normal steps of DiVE-dSwap, some views are processed
to compute their actual importance. Once enough views are
processed tomeet the number of samples required forPI0.80,
then Īau is used (Algorithm 2 line 13). Particularly, for this
examples, PI0.80 is achieved after 9 views are processed
(i.e., m = 9). Furthermore, in this example, Īau is set to 0.4,
which is the maximum importance observed when processing
those 9 views. That new upper bound of 0.4 will allow early
termination and pruning of some low-utility views in the
first iteration, as well as subsequent iterations (Algorithm 2
line 30-39).

B. ADAPTIVE PRUNING WITH RECTIFYING
As expected, our experimental results presented in Sec. VII
show that the pruning power provided by our adaptive
pruning method (i.e., DiVE-dSwap-Adaptive(PI)) described
above is inversely correlated to PI . That is, high pruning
is achieved at low values of PI . But also as expected,
at low PI , the effectiveness of recommendation (i.e., O(S))
is often reduced. That is because low PI requires only a
small number of processed sample views, which leads to low
accuracy in estimating the upper bound on importance Īau.
This might motivate using higher values for PI , such as
PI 0.95 or PI 0.97, to achieve a higher accuracy in
upper bound estimation. However, it also requires executing
more views which is clearly in conflict with our goal of
minimizing the number of query executions. Hence, the
challenge addressed in this section is maintaining a high
quality in recommendation ((i.e., O(S)), while executing a
small number of views (i.e., low PI ).

To illustrate that challenge, reconsider again our example
from the previous section, which is illustrated in Figure 4.
Recall in that example, Īau was set to 0.4 after 9 views

are processed. However, as the figure shows, in the third
iteration of DiVE-dSwap-Adaptive(0.80), an unpruned view
Vi was processed that turned out to have an importance
score I (Vi) = 0.6, which is clearly higher than the upper
bound Īau = 0.4. At that point it becomes clear that the the
upper bound on importance based on only 9 sample views
is inaccurate, and Īau should be set to the new observed
maximum value of 0.6. However, notice that the incorrect
value of Īau = 0.4 has already been used for three iterations so
far, whichmeans that some high utility viewsmight have been
pruned by mistake. As such, simply setting Īau to 0.6 in the
third iteration is clearly insufficient, and previous iterations
need to be revisited in light of the new more accurate value
of Īau.

As it has been shown in the previous example, setting PI
to a small value might lead an inaccurate estimation of Iu
and in turn incorrect pruning of high-utility views leading to
an overall low utility of recommendations. In fact, the same
observation is also true for high value of PI (e.g., PI = 0.95),
but the impact might be less significant than it is for low PI .
This motivated us to extend our adaptive pruning method to
rectify the impact of inaccurate estimation of Iu (i.e., DiVE-
dSwap-Rectify(PI)). Towards this, our proposed rectifying
algorithm provides an efficient backtracking mechanism,
where the scheme can backtrack to previous iterations to
re-evaluate and rectify previous decisions, while at the
same time minimizing the processing costs incurred in that
backtracking. To achieve this, our rectifying algorithm relies
on two important strategies: 1) Bookkeeping: to store and
keep track of the essential variables in each iteration, and
2) Caching: to cache and reuse the importance scores of
the views that have already been processed in previous
iterations (i.e., avoid recomputing each I (Vi) from scratch)
(Algorithm 3 line 7-16).
To understand how our rectifying algorithm works, con-

sider it employed in conjunction with DiVE-dSwap, as shown
in Figure 4. As such, for each iteration t , the algorithm
stores and maintains the following data structures and
variables:
• List Lt : Recall that in each iteration t , all candidate
views X are sorted in a list L based on their setDist
(as discussed in Sec III and Figure 3). To support
backtracking, after each iteration t is executed, its
corresponding sorted list Lt is saved as part of the
bookkeeping mechanism, in case Lt is to be revisited in
the future (Algorithm 3 line 13).

• Set St : Since in each iteration, a new view might
interchange with the view in the current set S, the
algorithm stores that updated set, such that each St
is corresponding to the updated set after executing
iteration t (Algorithm 3 line 14).

• Early termination position Tt : This is the index of
the view where early termination occurred in list Lt .
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Clearly, if backtracking is needed, all the views beyond
that position (which have been previously pruned), are
reconsidered as they may have a chance to join S under
the new estimate of Iu (Algorithm 3 line 15).

The idea underlying our bookkeeping strategy is to keep
track and store those essential variables listed above for
each iteration so that to efficiently support the cases in
which a higher estimated upper bound is found and the
upper bound Iau is updated. In such cases, our scheme will
backtrack to previous iterations, but instead of repeating the
processing incurred in each iteration, it can immediately
re-use those stored variables. For instance, as shown in
Figure 4, a new estimated upper bound is found in the third
iteration. Accordingly, the upper bound Iau is updated and
backtracking takes place to the first iteration, which used
an upper bound lower than than the newly estimated one.
Particularly, the stored variables for that iteration (i.e., its
output set St , sorted list Lt , and the early termination position
Tt ) are all used to re-examine the views that have been
pruned in that iteration. Hence, some views which might have
previously satisfied the pruning conditionmaxO(S\Sj∪Xi) <

O(S) may flip to maxO(S\Sj ∪ Xi) > O(S) after the upper
bound is updated, and are in turn executed to compute their
actual importance score (Algorithm 3 line 25-38).
Notice that our rectifying algorithm would need to

backtrack every time a new higher upper bound Iau is found.
Each backtrack might require processing some views that
have been initially pruned. However, it is important to notice
that a view that has been pruned in one iteration t because
it was not promising enough in that iteration, might actually
have been processed in a later iteration. To leverage that
observation, and to save the cost of processing views while
backtracking, our rectifying algorithm utilizes caching to
save and maintain the importance score of all processed
views. That is, it maintains a cache table of all the views
that have been processed in any iteration, together with the
importance score of each of those views. Accordingly, when
backtracking occurs, and an initially pruned view Vi is to
be processed, then that cache table is checked first. If Vi
exists in that table, it means that while Vi has been pruned
in that revisited iteration, it has actually been processed in
another iteration, and its importance score I (Vi) has already
been computed and can be re-used directly. As such, a view
is processed only if its importance score is not available in
the cache table. Clearly, that caching strategy will avoid any
duplication in view processing, and guarantees that each view
is processed only once, which reduces the number of query
execution, while at the same time supports backtracking to
improve the quality of recommendation.

V. SHARING-BASED AND HYBRID OPTIMIZATIONS
In this section, we first present our sharing-based optimiza-
tion (i.e., Shared-DiVE-dSwap), which aims to efficiently

Algorithm 3 Rectifying Algorithm
Input: Set of views V and result set size k
Output: Result set S ⊆ V, |S| = k

1 S ← set of maximum diversity
2 X ← [V\S]
3 PI ← 0.80
4 O(S)← objective function of S (Eq. 3)
5 Iau ← AdaptivePruning(PI ) Alg. 2 (line 13)
6 t ← 0 iteration counter;
7 Function UpdateDataFrameCacheTable(data):
8 if CacheTable not found then
9 create CacheTable

10 else
11 update mode ON
12 end
13 dfL ←

[
t, Iau,Xi, S\Sj, setDist

]
Alg. 2 (line 6)

14 dfS ← [t, Iau, S]
15 dfT ← [t, Iau,T ]
16 End Function
17 maxO(Xi, S\Sj)← (1− λ)× Īau + λ× setDist

[
Xi, S\Sj

]
18 while improve = True do
19 for Xi in set X do
20 S ′ ← S
21 for Sj in set S do
22 if O

(
S ′

)
< O

(
S\Sj ∪ Xi

)
then

23 S ′ ← S\Sj ∪ Xi
24 end
25 if maxO(Xi, S\Sj) < O (S) then
26 prune

[
Xi, S\Sj

]
27 data←

[
t, Iau, S,T ,

[
Xi, S\Sj, setDist

]]
28 UpdateDataFrameCacheTable(data)
29 end
30 if new Iau found after more views are

executed then
31 backtrack and rectify
32 update Iau to calculate maxO
33 if maxO(Xi, S\Sj) < O (S) then
34 prune

[
Xi, S\Sj

]
35 data←[

t, Iau, S,T ,
[
Xi, S\Sj, setDist

]]
36 UpdateDataFrameCacheTable(data)
37 end
38 end
39 end
40 if O

(
S ′

)
> O (S) then

41 S ← S ′

42 end
43 end
44 if O (S) > Ocurrent then
45 Ocurrent ← O (S)

46 improve← True
47 else
48 improve← False
49 end
50 t+ = 1
51 end
52 return S
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reduce the number of query executions when generating
view recommendations (Sec. V-A). That optimization is
further expanded and integrated with our proposed DiVE-
dSwap-Rectify(PI), where combining both techniques leads
to maximizing the efficiency of our proposed methods
(Sec. V-B).

A. SHARING-BASED OPTIMIZATION
Recall that to automatically recommend interesting views,
all possible views are generated first via executing a large
number of aggregate queries on all possible combinations
of attributes A, measures M and aggregate functions F. In a
naive straightforward approach, each query underlying a view
(i.e., the query executed to generate that view) is processed
independently on the DBMS. However, notice that those
queries scan the same database and different queries still
share some common attributes and measures. Hence, in this
work, we leverage that similarity and utilize multi-query
processing, in which the execution of similar queries is shared
so that to reduce the overall query/view processing time.

For instance, consider the Flights dataset [40], which
has 7 attributes A, and 4 measures M, and further assume
4 aggregate functions F are used. Hence, the total number
of possible views based on all possible combinations of A,
M, and F is 7 × 4 × 4 = 112. Accordingly, when each
view is generated separately, the number of independent
queries that are executed on the DBMS is equal to 2 ×
112 = 224, where for each view one query is executed to
generate the target view Vi(DQ) and another is executed to
generate the reference view Vi(DR) (please refer to Sec. II).
This is equivalent to executing the sequence of queries:
(A1,M1,F1), (A1,M1,F2), . . . , (A1,M2,F1), . . . ,
(A2,M1,F1), . . . , (An,Mn,Fn) on both DQ and DR.
Thus, using some classical multi-query optimization tech-

niques (e.g., [41]), the execution of that sequence of different
queries listed above is optimized to reduce query processing.
In particular, queries with the same group-by attribute (i.e.,
Ai) are combined as a single query with multiple aggrega-
tions [41]. For instances all queries on A1 are combined in
the re-written query (A1, {F1(M1),F1(M2)...Fn(Mn)}), which
is executed as one SQL query on the DBMS. Clearly, using
this simple sharing-based multi-query optimization, reduces
the number of queries on the Flights dataset from 224 to only
2× 7 = 14 queries.

At this point, it might seem that this sharing-based
optimization Shared-DiVE-dSwap presented above is in
conflict with our pruning strategies DiVE-dSwap-Rectify(PI)
proposed in the previous sections.

Both the sharing-based optimization Shared-DiVE-dSwap
presented above, as well as our pruning strategies DiVE-
dSwap-Rectify(PI) proposed in the previous sections achieve
significant reductions in query processing time. However,
those reductions are achieved through different optimizations
(i.e., pruning vs. sharing), and are orthogonal to each other.
Particularly, on the one hand, Shared-DiVE-dSwap favors
generating all possible views by executing all their underlying

FIGURE 5. Adaptive pruning with rectifying DiVE-dSwap-Rectify(PI) vs.
Sharing-based Shared-DiVE-dSwap vs. Hybrid optimization
Shared-DiVE-dSwap-Rectify(PI) in a simple illustration.

queries at the same time. On the other hand, ourDiVE-dSwap-
Rectify(PI) favors eliminating the generation of as many
views as possible by leveraging the properties of diversity
and the upper bound on importance. This is achieved by:
1) ordering/ranking the queries according to their utility
scores, and 2) pruning those queries of low-utility.

Hence, when sharing the execution of the set of queries
(A1, {F1(M1),F1(M2)...Fn(Mn)}), the entire set is executed
as one single query to leverage shared processing. To the
contrary, when applying our pruning methods, the dif-
ferent queries in that set will be considered in random
non-sequential order based on their utility scores, and many
of them are likely to be pruned. That is, each query in the
set is executed on-demand to maximize pruning and reduce
the number of query executions. In Sec VII, we compare
the performance of Shared-DiVE-dSwap vs. DiVE-dSwap-
Rectify(PI), while in the next section we propose a new
scheme, which combines the benefits of both pruning and
shared optimization, Shared-DiVE-dSwap-Rectify(PI).

B. HYBRID OPTIMIZATION
To explain our hybrid optimization methods (i.e., Shared-
DiVE-dSwap-Rectify(PI)), consider Figure 5, which illus-
trates a visual comparison between three techniques, namely:
adaptive pruning DiVE-dSwap-Adaptive(PI), sharing-based
Shared-DiVE-dSwap, and hybrid (pruning + sharing-based)
Shared-DiVE-dSwap-Rectify(PI). In particular, the figure
expands on our earlier Figure 5 and shows the list of queries
to be executed during one iteration of our DiVE-dSwap. The
figure also shows that under the pruning techniques (left-
hand side), those queries are sorted by setDist , where the top
queries with high value for setDist are executed until early
termination is reached, as explained in Sec. III-B.

Meanwhile, Shared-DiVE-dSwap combines queries with
the same group-by attribute into a single query with multiple
aggregations. For instance, as Figure 5 shows, the three
queries that perform group-by on attribute A1 are combined
into one shared query, and the same for the other three queries
on attribute A2. Hence, Shared-DiVE-dSwap replaces the
execution of those 6 highlighted individual queries with the
execution of only 2 shared queries.
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Now turning our attention to our new hybrid method
Shared-DiVE-dSwap-Rectify(PI), Figure 5 shows that,
in general, it follows the same logic required for basic query
pruning, where queries as are sorted by setDist . However,
differently from the basic pruning approach, in Shared-
DiVE-dSwap-Rectify(PI), whenever a query is selected for
execution (i.e., unpruned query), it is executed together with
other queries that have the same group-by attribute. For
example, as the figure shows, when the top query in the list is
selected for execution, then it is combined together with other
queries with a group-by attribute A1 and are all processed as
one single shared query with multiple aggregations.

As such, Shared-DiVE-dSwap-Rectify(PI) combines the
best of both worlds! That is, instead of executing all
groups of shared queries, it selectively executes those shared
groups that contain queries with high priority, according
to our pruning methods. This provides two simultaneous
benefits: 1) eliminating the processing of some queries
when early termination is reached, and 2) reducing the
processing time of unpruned queries by utilizing shared
processing.

Clearly, the amount of pruning achieved by this hybrid
method is expected to be less than that provided by a pure
pruning method. That is, the number of queries that are
eliminated without processing is reduced under the hybrid
method. This is because some of the queries that would have
been eliminated under the pruning method, might now be
executed because they are shared with some high-priority
unpruned query. However, processing those queries would
come at a minimal cost because of the shared processing.

From the discussion above, it should be clear that the
number of queries which are combined into a single shared
group-by query (i.e., sharing factor) affects the performance
of our hybrid optimization. In particular, consider again
the top query in the sorted list shown in Figure 5, which
performs a group-by on attribute A1. Clearly, for that query,
the maximum sharing factor or number of other queries that it
can be combined with for shared execution is equal to:M×F.
In that extreme case, our hybrid method will simply converge
to a pure shared-based optimization since all queries with
the same group-by attribute are combined and executed as a
single query with multiple aggregations. That is, there will be
minimum potential for eliminating low-priority queries based
on our pruning methods. To the contrary, if each query on
the list is executed as a single query without employing any
shared processing, then our hybrid approach will be exactly
equivalent to our pruning methods discussed in the previous
section. That is, the reductions in query processing time will
only come from pruning without any additional savings from
shared processing. Hence, we introduce a parameter called
sharing factor (β), which acts as a knob that controls the
amount of desired shared processing. Particularly, β is tuned
in the range 0% ≤ β ≤ 100%. For instance, a higher
value of β results in maximazing the amount of shared-based
processing, whereas a lower value of β maximizes the amount
of adaptive pruning. In Sec. VII, we study that trade-off

TABLE 1. Parameters testbed in the experiments.

and show the impact of the sharing factor parameter on the
performance of our hybrid approach.

VI. EXPERIMENTAL TESTBED
In this section, we present the extensive experimental
evaluation of our DiVE scheme on real data sets. Table 1
summarizes the parameters used in our evaluation (default
values are in bold).

We conducted our experiments over the following datasets:
1) Heart Disease Dataset [42]: This dataset is comprised of
8 dimensional attributes and 6 measure attributes, using four
aggregate functions, resulting in a total of 2 × 8 × 6 × 4 =
384 possible views, and 2) Flights Dataset [40]: This dataset
is comprised of 7 dimensional attributes and 4 measure
attributes for a total of 2× 7× 4× 4 = 224 possible views.
While its dimensionality is lower than the heart disease data,
it is a relatively large dataset of almost one million tuples,
which helps in evaluating the incurred query processing time.
(3) The Diabetes 130 US hospital dataset [17] consists of
14 dimensional attributes, 13 measures and 100 thousand
tuples, for a total of 2 × 14 × 13 × 4 = 1456 possible
visualizations.

For each experiment, the performance measures are
averaged over a query workload of ten random queries
submitted to select ten different subsets. The default value
for k in our evaluation is 10, whereas the diversity weight
ratio is 3(A) : 2(M ) : 1(F). That is, dimensional attributes
have the highest similarity weight in the Jaccard computation,
followed by measure attributes, and the least weight is
given to aggregate functions (please see Section II). The
default trade-off weight λ to balance between importance and
diversity is set to 0.5. Finally, the default diversity function is
MaxSum, however, we also present our results onMaxMin (as
it has been presented in Section II).

In terms of evaluated methods, as mentioned earlier, our
work in [11] shows that DiVE-dSwap provides the best
performance in terms of both effectiveness and efficiency
compared to existing solution. However, for the sake of
completeness, in this work we re-evaluate DiVE-dSwap and
its proposed extension against the baselines discussed in [11].
Particularly, in terms of diversity, we employ the classical
Greedy Construction algorithm, which has been shown to
maximize diversity within reasonable bounds compared to
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the optimal solution (e.g., [30], [33], [43]). In this work,
we refer to that baseline as Greedy-Diversity. Similarly,
in terms of importance, we adopt the work on SeeDB for
recommending the top-k views with the highest deviation [7].
Particularly, in that method, all possible target and reference
views are generated by executing their underlying queries,
then the list of views is linearly scanned to recommend the
top-k for which the target view shows high deviation from its
corresponding reference view (denoted as Linear-Importance
in this work).

Those baseline, together with our proposed DiVE-dSwap
methods are summarized as follows:
• Greedy-Diversity: select the top-k views that maximize
the total diversity of set S.

• Linear-Importance: select the top-k views with the
highest deviation value (the importance score).

• DiVE-dSwap: a local search algorithm starts out with
a complete initial solution and then attempts to find a
better solution in the neighborhood of that initial one,
where set S is initiated with top-k most diverse views.

• DiVE-dSwap-Static: DiVE-dSwap with the static prun-
ing (theoretical upper bound)

• DiVE-dSwap-Adaptive(PI): DiVE-dSwap with adaptive
pruning methods, where PI is based on non-parametric
predictive intervals

• DiVE-dSwap-Rectify(PI): DiVE-dSwap with adaptive
pruning methods and rectifying, PI is non-parametric
predictive intervals and R is rectifying.

• Shared-DiVE-dSwap: DiVE-dSwap with sharing-based
optimization

• Shared-DiVE-dSwap-Rectify(PI): hybrid method, the
combination of adaptive pruning with rectifying method
DiVE-dSwap-Rectify(PI) and sharing-based optimiza-
tion Shared-DiVE-dSwap

VII. EXPERIMENTAL EVALUATION

A. IMPACT OF λ ON EFFECTIVENESS

Figures 6 and 7 illustrate the impact of varying λ on the
performance of each scheme in terms of effectiveness (i.e.,
the value of the objective function O(S)). As λ decreases,
Linear-Importance consistently achieves the highest O(S).
Conversely, as λ approaches 1, Greedy-Diversity attains
the highest O(S). Consequently, there exists a crossover
point between the two schemes. Nevertheless, DiVE-dSwap
demonstrates a stable performance for all values of λ,
surpassing both Linear-Importance and Greedy-Diversity.

B. IMPACT OF k ON EFFECTIVENESS

Figures 8 and 9 illustrate theO(S) values for various schemes
as the number of recommended views k varies from 5 to
35 for the Heart disease and Flight datasets, respectively.
Overall, O(S) decreases as k increases for all schemes. This
is due to the decrease in both the average importance score
and diversity of a set S as new views are added. The views

FIGURE 6. The impact of λ on O over heart disease dataset.

FIGURE 7. The impact of λ on O over flight dataset.

FIGURE 8. The impact of k on O over heart disease dataset.

FIGURE 9. The impact of k on O over flight dataset.

added earlier to S have a higher importance score than
those added later. Similarly, the diversity function shows a
diminishing marginal gain trend as the size of set S increases.
An important observation is that our DiVE-dSwap approach
consistently has higher overall objective function values
compared to the two extreme baseline approaches for all
values of k .

C. IMPACT OF DIVERSIFICATION FUNCTIONS ON
DiVE-dSwap

Figures 10 and 11 illustrate the impact of varying λ on the
performance of DiVE-dSwap as measured by O(S) using
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FIGURE 10. The impact of λ on O over diabetes dataset using Max-SUM
diversity function.

FIGURE 11. The impact of λ on O over diabetes dataset using Max-MIN
diversity function.

different diversity functions on the Diabetes dataset. Recall
that our previous work [11] focused on the Max-SUM
diversity function, wheres in this paper, we also study
the impact of adopting the Max-MIN alternative diversity
function. Also recall that the goal of Max-SUM is to
maximize the average pairwise distance among the objects
in a set, while the goal of Max-MIN is to maximize
the minimum pairwise distance among those objects. For
instance, suppose a set S comprises three views, where all
views have different values for A, M , and F . The maximum
distance between any two views in set S is 1.0. Using the
Max-SUM diversity function, the diversity score of set S is
the total sum of all distances divided by k ∗ (k − 1), i.e.,
f (S,D) = (1+1+1)

3(3−1) = 0.5. In contrast, using the Max-MIN
function, the diversity score is f (S,D) = 1.0 due to the
views having different A, M , and F . Consistently with that
observation, Figures 10 and 11 show that, in general, the
overall value of O(S) tends to be higher for all values of λ

when using Max-MIN vs. Max-SUM. That increase in O(S)
is even further magnified at higher values of λ, in which
the Max-MIN high diversity score tends to dominate the
overall O(S) function. The figures also show that for both the
Max-SUM and Max-MIN diversity functions, DiVE-dSwap
automatically adapts to the value of λ and outperforms the
baseline methods.

D. IMPACT OF λ ON THE PERCENTAGE OF PRUNED
QUERIES

In Figures 12 and 13, we evaluate the performance of
our proposed pruning techniques in terms of the number
of pruned queries. We compare DiVE-dSwap-Static and
DiVE-dSwap-Adaptive(0.97) over different values of λ,

FIGURE 12. DiVE-dSwap static pruning vs adaptive pruning on heart
disease dataset.

FIGURE 13. DiVE-dSwap-Adaptive(0.97) on three different datasets.

as we execute them on the Heart disease dataset. In this
comparison, we also include DiVE-dSwap (i.e., no pruning)
to serve as a performance yardstick. Overall, the results show
that DiVE-dSwap-Adaptive(0.97) has better performance in
terms of the number of pruned views compared to DiVE-
dSwap-Static. We note that the number of pruned queries
increases significantly for higher values of λ. Particularly,
at higher value of λ, O(S) is dominated by the diversity
score, thereby increasing the pruning power. In comparison
to DiVE-dSwap-Adaptive, recall that DiVE-dSwap-Static
utilizes the theoretical upper bound of the importance score,
Iu. Since that theoretical bound typically overestimates the
actual bound on the importance score, DiVE-dSwap-Static
provides limited pruning power, and is only able to prune
some queries for values of λ higher than 0.8, as shown in
Figure 12.

E. IMPACT OF PI ON DiVE-dSwap-ADAPTIVE

In this experiment, we evaluate the performance of the
DiVE-dSwap-Adaptive adaptive pruning technique under
varying values of PI and λ. As depicted in Figure 14, low
PI results in a high number of pruned queries. For example,
DiVE-dSwap-Adaptive(0.70) has the highest number of
pruned queries, with 48% of queries being pruned when the
default λ value of 0.5 is used. Note that in this comparison,
we have introduced a new benchmark method that we
annotate as DiVE-dSwap(Hypothetical). In that method,
we assume that the actual upper bound on importance is accu-
rately known in advance. As expected, under that hypothetical
assumption, DiVE-dSwap(Hypothetical) provides significant
pruning power (Figure 14), at no loss in effectiveness
(Figure 15). Particularly, Figure 15 shows the loss of

62274 VOLUME 11, 2023



M. A. Sharaf et al.: Efficient Diversification for Recommending Aggregate Data Visualizations

FIGURE 14. DiVE-dSwap-Adaptive PI values vs. ratio of pruned queries.

FIGURE 15. PI values vs. Error on O(S) PI values vs. Error in O(S).

DiVE-dSwap-Adaptive in O (S) in comparison to the O (S)

achieved by DiVE-dSwap(Hypothetical). As the figure
shows, that loss is 0% for PI = 0.97, which is equivalent
to using a large sample size for estimating the importance
upper bound, and in turn achieving higher accuracy (note
that in the figure, DiVE-dSwap-Adaptive(0.97) coincides
with both DiVE-dSwap and DiVE-dSwap(Hypothetical)).
As the sample size gets smaller (i.e., lower values of PI),
that accuracy in estimating the upper bound is decreased,
leading to some loss in the achieved effectiveness. For
instance, as Figure 15 shows, the loss in effectiveness might
go up to 10% for PI = 0.70. We also note that the
loss in O (S) decreases as λ increases, as the impact of
importance score becomes smaller in the hybrid objective
function. Maximizing the effectiveness, while at the same
time minimizing the number of processed queries, is the
motivation for our newly proposed rectifying method, which
is evaluated next.

F. IMPACT OF RECTIFYING

Figure 16 compares the performance of DiVE-dSwap-
Rectify(PI) and DiVE-dSwap-Adaptive(PI), where DiVE-
dSwap-Rectify(PI) employs both adaptive pruning and rec-
tifying, whereas DiVE-dSwap-Adaptive(PI) employs only
adaptive pruning. As shown in the figure, for both
DiVE-dSwap-Rectify(PI) and DiVE-dSwap-Adaptive(PI),
a lower PI results in a higher number of pruned queries.
For example, when PI = 0.50, more queries are pruned
compared to when PI = 0.90. However, for the same value
of PI , DiVE-dSwap-Rectify(PI) typically incurs a lower
error rate than DiVE-dSwap-Adaptive(PI). For example,
when PI = 0.90, DiVE-dSwap-Adaptive(0.90) prunes the

FIGURE 16. Comparison between DiVE-dSwap-Rectify(PI) and
DiVE-dSwap-Adaptive(PI) in terms of the percentage of pruned queries
and the error in O(S).

FIGURE 17. The effectiveness of sharing-based optimization over all
datasets.

processing of up to 6% of the queries, but incurs a 6% error
in O(S). In contrast, for the same value of PI, DiVE-dSwap-
Rectify(0.90) prunes up to 5% of the queries, while incurring
only 3% error, making it more effective. Additionally,
while achieving the same error rate of 3%, DiVE-dSwap-
Rectify(0.90) can prune up to 5% of the queries, while DiVE-
dSwap-Adaptive(0.95) can only prune 2% of those queries to
achieve the same small error rate of 3%.

G. PERFORMANCE OF HYBRID OPTIMIZATION

In this experiment, we compare the performance of four
optimization methods in terms of both effectiveness and
efficiency: 1) DiVE-dSwap, 2) DiVE-dSwap-Rectify(0.80),
which combines adaptive pruning and rectifying, 3) Shared-
DiVE-dSwap, which employs sharing-based optimization,
and 4) Shared-DiVE-dSwap-Rectify(0.80), which combines
adaptive pruning with rectifying and sharing-based opti-
mization, and we denote as hybrid optimization. We note
that in this experiment, DiVE-dSwap and Shared-DiVE-
dSwap are used as baselines since they execute all query
views to generate recommendations without employing any
pruning. Figure 18 shows that our hybrid approach, Shared-
DiVE-dSwap-Rectify(0.80) with β = 50% provides the
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FIGURE 18. The impact of β on our hybrid optimization efficiency.

FIGURE 19. The impact of β on our hybrid optimization effectiveness.

minimum query execution time over the Flights dataset. That
reduction in execution time is achieved while maintaining
high effectiveness, as shown in Figure 17, which depicts the
quality of recommendations achieved by all methods for all
our employed datasets.

H. THE IMPACT OF SHARING FACTOR β ON HYBRID
OPTIMIZATION EFFICIENCY

As described in Sec.V-B, our proposed hybrid method
combines both pruning and sharing-based query processing.
That is, low-utility queries are pruned, whereas unpruned
queries with the same group-by attribute are combined and
processed as a single query with multiple aggregations.
Figure 18 illustrates the impact of the sharing factor β

on the performance of our hybrid Shared-DiVE-dSwap-
Rectify(0.80) in terms of efficiency. As the figure shows,
the query execution time starts high, then it decreases with
increasing β, until a point where it starts increasing again
(U-shape). That is because at low β values, there is minimum
shared processing, and the only reduction in execution time
comes from pruning. Oppositely, at high β values, many
queries are combined together, which minimizes the chance
of pruning, and the reduction in execution time is achieved
only from the shared query processing. As the figure shows,
for this experiment the best balance between shared execution
and pruning is achieved around β = 50%, which provided the
minimum execution time.

I. IMPACT OF SHARING FACTOR β ON HYBRID
OPTIMIZATION EFFECTIVENESS

Figure 19 shows the impact of the sharing factor β

on the performance of Shared-DiVE-dSwap-Rectify(0.80)
in terms of effectiveness. The results indicate that that
effectiveness increases as β increases. That is, the more

FIGURE 20. The Impact of β on our hybrid optimization effectiveness -
Shared-DiVE-dSwap-Rectify(0.80) using different PIs.

FIGURE 21. The efficiency of sharing-based optimization over the flights
dataset.

queries are executed because of high-degree of shared
processing, the more accurate is the estimated upper bound
on view importance Īau, and in turn higher accuracy in
pruning low-importance queries. However, we note that in
this experiment the effectiveness of Shared-DiVE-dSwap-
Rectify(0.80) keeps increasing up until β = 50%, then
it levels off and stays constant. In other words, setting
β = 50% lead to executing a large enough sample of
queries to discover the actual upper bound on importance
Iau. This is further investigated in Figure 20, in which we
examine the interplay between β and different values of
PI . As expected, the figure shows that higher values of PI
lead to higher effectiveness. However, the figure also shows
that by increasing β, all versions of Shared-DiVE-dSwap-
Rectify(PI) reach the maximum effectiveness, regardless of
their PI value.

VIII. RELATED WORK

A. INSIGHT RECOMMENDATION SYSTEMS

Recent years have seen the introduction of visual insight
recommendation systems due to the increasing user demand
for automated insight discovery (e.g., [4], [5], [6], [7], [8],
[9], [10], [12], [13], [21], [45], [46]). Generally, visual insight
recommendation systems can be divided into the following
three categories:

• Task Driven Recommendation: focuses on recommend-
ing interesting visualizations that facilitate particular
user objectives and tasks such as finding missing values,
outliers, or specific patterns.

• FeedbackDriven Recommendation: focuses on enabling
the discovery of personalized interesting visualizations
by utilizing the user’s feedback as inputs to the
recommendation systems.
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TABLE 2. A summary of data-driven visualization recommendation systems.

• Data Driven Recommendation: focuses on enabling
the discovery of interesting visualizations from large
volumes of data based on data characteristics such
as summaries, distribution, correlation, historical data,
corpus, labeled data, or data collected offline. Machine
learning methods, either supervised or unsupervised
learning, are often used in this approach.

It is also possible for a visual insight recommendation
system to combine elements of two or more of these cate-
gories, such as a task-driven and feedback-driven system or
a task-driven and data-driven system. A detailed explanation
of these categories will be provided in the next section.

• Task Driven Recommendation: The Profiler sys-
tem [9] detects anomalies in data by utilizing mutual
information metrics and then recommends visualiza-
tions (termed ‘‘anomaly insights’’) to users to aid in
resolving data quality issues. Another example of a
task-driven recommendation system is TaskVis [47].
TaskVis categorizes visualization tasks into 18 analytic
tasks, based on a survey of industry and academia.
These tasks include analysis of distributions, clustering,
comparisons, changes over time, identifying anomalies
and trends, among others. TaskVis recommends visual-
izations based on the user’s specified task and interests.
The user inputs their task and interests, and TaskVis
generates the recommended visualizations.

• Feedback Driven Recommendation: The VizRec sys-
tem [48] employs three common methods in recom-
mender systems to recommend visualizations to users:
1) Collaborative Filtering (CF), in which recommenda-
tions are constructed based on the user’s past ratings of
visualizations and the recommended visualizations are
similar to those the user has previously rated. 2) Content-
based Filtering (CBF), which is used to address the
‘‘cold start’’ problem that arises when new users do
not have historical rating data. 3) Hybrid Filtering,

a combination of CF and CBF that provides benefits to
users, particularly when their interests change. Another
example of a feedback-driven recommendation system
is AIDE [49]. It employs a human-in-the-loop approach
to learn user interests based on their feedback. AIDE can
guide users through the data space they wish to explore
and refine its predictions based on the user’s feedback.

• Data Driven Recommendation: DeepEye [13], [50] is
a visual insight recommendation system that employs
a supervised machine learning approach. The system
aims to capture human perception by understanding
existing examples usingML-based classifier techniques.
Specifically, DeepEye trains a binary classifier to decide
whether a particular visualization is good or bad. To train
the machine learning models, DeepEye utilizes two
types of labeled datasets: 1) labeled visualizations as
good or bad with respect to all possible candidate
visualizations; 2) labeled visualizations as good, from
two compared visualizations. Additionally, the system
employs a supervised learning-to-rank model to rank
visualizations. A more comprehensive explanation of
this approach can be found in [51]. SeeDB [7] is
one of the first visual insight recommendation system
which recommends top-k aggregate visualizations based
on data-driven deviation-based approach. A user study
is conducted in that work, and it provides strong
evidence that a deviation-based formulation of utility is
able to provide analysts with interesting visualizations.
TopkAtrr [21] leverages a deviation-based approach to
recommend attributes and it guarantees the correctness
of its recommendations. Similarly, VizRec [44] employs
a deviation-based approach, but with a focus on
eliminating the risk of discovering false insights or
misleading visual recommendations through the use of
classical statistical testing. QuickInsights [3] defines
its interestingness as data that is trending upwards
or downwards rapidly and consistently. In addition,
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QuickInsights supports multiple types of insights for
a more comprehensive analysis. Zenvisage [22] also
employs a deviation-based approach, but defines inter-
estingness as visualizations that are similar to the
user’s desired pattern. To do this, Zenvisage provides
an empty chart for the user to draw their desired
pattern, and subsequently recommends visualizations
that have similar patterns. Other works that lever-
age a deviation-based approach include MuVE [15],
which addresses binning problems in visualization
recommendation systems. MuVE proposes a hybrid
multi-objective utility function that captures the impact
of numerical dimension attributes in generating visu-
alizations that are: 1) interesting (deviation-based), 2)
usable (not too cluttered), and 3) accurate. DiVE [11]
proposes hybrid utility functions that capture both the
importance (deviation-based) and the diversity of the
recommended insights.

Table 2 presents a summary of current approaches
for data-driven visualization recommendation. For each
approach, we summarize the metrics used for the ranking of
the recommended visualizations. In addition, since efficiency
has been a main goal of this work, we also briefly discuss
the data and query processing optimizations proposed by
each of the presented approaches. For more details, we refer
the reader to some recent surveys on this topic, including
[51], [52].

B. THE IMPORTANCE OF DIVERSIFIED
RECOMMENDATION RESULTS

Diversification is a commonly used feature in recommenda-
tion systems to enhance user satisfaction and improve their
experience (e.g., [16], [26], [27], [28], [29], [30], [31], [32]).
The goal of recommending diversified results is to reduce the
risk of redundancy and increase the coverage of recommen-
dations. A recommender system without diversification may
return results that are too similar to meet users’ needs [29].
In contrast, a recommender system with diversification
returns a set of representative results that are not only relevant
to the user query, but also diverse. In the context of visual
insight recommendation, the absence of diversification may
lead to the recommendation of redundant visualizations,
limiting the scope of possible insights for the user.

There are various types of diversification methods pro-
posed in the literature. These types of diversification can be
classified into one of the following categories: 1) Content-
based diversification, which aims to select results that are
dissimilar to each other (e.g., [11], [30], [53]); 2) Novelty-
based diversification, which aims to select results that
contain new information when compared to what was
previously presented to the user [27]; and 3) Semantic-
based diversification, which aims to select results that
belong to different categories or topics [54]. Essentially,
these various types of diversification have different focuses.
Content-based diversification emphasizes the dissimilarity of

the recommended results, while novelty-based diversification
focuses on recommending new information. Semantic-based
diversification aims to provide a comprehensive understand-
ing of user needs by resolving ambiguous queries and
returning results from different categories or topics. However,
in this work, we focus on content-based diversification to
increase the overall diversity of the recommendation results
and to avoid redundancy.

There are numerous algorithms that return diversified
top-k results, however, most of them are generally based
on these two popular algorithms: Greedy MMR [55], and
SWAP [30], [33]. The Maximal Marginal Relevance (MMR)
algorithm [55] balances between the relevance score and the
diversity score of the recommended set S by introducing a
λ coefficient. The algorithm is greedy in nature, growing
the size of the top-k set by adding items one by one while
considering the relevance of the item and its diversity with
previously selected items. The SWAP algorithm [30], [33]
is a local search algorithm that starts by sorting the items
by relevance and initializing the top-k result set S with the
k-items with the highest relevance score. In each iteration,
it scans unselected items and swaps one itemwith a candidate
item if the item has a higher contribution to diversity. The
algorithm terminates when the unselected items have been
fully scanned. These algorithms have complex steps for
computing the pairwise diversity among all items to generate
diversified top-k results. For large databases, this repetitive
computation is computationally expensive. The work in [56]
develops a generic framework for efficient computation
of top-k diverse results, consisting of a function called
DivGetBatch() that replaces repeated pairwise comparisons
of diversity scores of items with pairwise comparisons
of ‘‘aggregate’’ diversity scores of a group of items and
a structure called I-tree, a hierarchical complete tree-like
structure that divides a database containing N items into
multiple groups of items. That framework ensures up to a 24×
speedup in computation of top-k diverse results.

It is important to note that various diversity functions
have been employed in the literature to achieve diversity
when selecting a set of objects, including the MaxMin and
MaxSum functions. The goal of the MaxSum function is to
maximize the average pairwise distance between the objects
in the recommendation results, whereas the goal of the
MaxMin function is to maximize the minimum pairwise
distance between the recommendation results. In this work,
we consider both notions of diversity functions (MaxMin and
MaxSum) and both the Greedy and Swap algorithms when
implementing diversification to generate diversified top-k
visual insights.

IX. LIMITATIONS AND FUTURE WORK

Our proposed DiVE scheme adopts a data-driven approach
in recommending interesting visualizations, which clearly
has its advantages as well as its disadvantages. One general
advantage of the data-driven approach is its ability to reduce
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biases that might arise from human judgment, as recommen-
dations are based on objective data-driven metrics. Mean-
while, a disadvantage is the lack of personalization, as data-
driven recommendations may not be tailored to individual
user preferences and needs. However, DiVE takes one step
towards that personalization by introducing diversification
so that the recommended visualizations provide a wider
coverage of the possible insights to be discovered. That is,
in addition to the data-driven notion of importance, providing
a diversified set of visualizations would cater for different
personalized analytical needs.

However, DiVE still provides limited user-driven person-
alization, which we plan to address in our future work.
For instance, currently, we assume that the user is able
to provide a pre-specified weight to balance the tradeoff
between importance and diversity (i.e., the λ parameter
in Eq.3). In the future, we plan to utilize active learning
methods in order to automatically learn the user preference
for that tradeoff (e.g., [49]), and in turn adaptively set the
correspondingweight based on the user’s feedback. Similarly,
we will also investigate learning the user preference for
tuning our context-driven similarity measure. Particularly,
we will learn what makes two visualizations (dis)similar
from the user’s perspective and accordingly adapt the weights
in our utilized Jaccard distance measure (please see Eq.2).
Aside from the deviation-based metric, we plan to expand
our multi-objective hybrid function to integrate diversity
with other data-driven measures of importance [4], [57]
(e.g., correlation, skewness in distribution, etc.). Finally,
as we already exploited in this work the mathematical
characteristics of the deviation-based metric to optimize the
incurred query processing (i.e., query pruning based on the
metric bounds), in the future, we will also investigate novel
optimization methods that suit those new multi-objective
functions.

X. CONCLUSION

In this work, we propose several optimization techniques for
incorporating diversification in the process of recommending
insightful visualizations. Central to our proposed techniques
is a hybrid utility function, which combines the importance of
the recommended visualizations, together with the diversity
of those recommendations. The main idea underlying our
proposed techniques is to prune the processing of a large
number of low-utility visualizations, while sharing the
processing of the remaining unpruned and, potentially,
high-utility ones. This allows for minimizing the query
processing time incurred during the recommendation process,
while at the same time maximizing the quality of those
recommendations, as it has been shown through our extensive
experimental evaluation.
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