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Abstract. In insight recommendation systems, obtaining timely and
high-quality recommended visual analytics over incomplete data is chal-
lenging due to the difficulties in cleaning and processing such data. Fail-
ing to address data incompleteness results in diminished recommendation
quality, compelling users to impute the incomplete data to a cleaned ver-
sion through a costly imputation strategy. This paper introduces VizPut
scheme, an insight-aware selective imputation technique capable of de-
termining which missing values should be imputed in incomplete data to
optimize the effectiveness of recommended visualizations within a speci-
fied imputation budget. The VizPut scheme determines the optimal allo-
cation of imputation operations with the objective of achieving maximal
effectiveness in recommended visual analytics. We evaluate this approach
using real-world datasets, and our experimental results demonstrate that
VizPut effectively maximizes the efficacy of recommended visualizations
within the user-defined imputation budget.

Keywords: Incomplete data · Insight recommendation · Data explo-
ration.

1 Introduction
The rapid growth of data in various domains has led to an increasing demand for
effective data analysis and visualization tools. Tools such as Tableau [1], Spot-
fire [6], and Power BI [5] have been introduced to provide visually appealing
visualizations that reveal meaningful insights. However, selecting combination
of dimensional attributes and measure attributes that lead to meaningful visu-
alizations without prior knowledge of the data can be a challenging task for an
analyst. Manually searching for insights in each visualization is time-consuming
and labor-intensive.

This challenge has motivated research efforts to automatically recommend
important visualizations based on metrics that capture their utility (e.g., [24],
[18], [17], [32], [11], [30], [23], [10], [35], [27], [16], [14]). These visualization rec-
ommendation systems have emerged as a powerful solution to assist users in
exploring and understanding complex datasets by automatically recommend-
ing the most interesting or important visualizations. However, the performance
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of these systems is heavily dependent on the quality of the underlying data.
Real-world datasets are often fraught with issues, such as noise, inconsistencies,
and incompleteness, which can adversely affect the quality of the recommended
visualizations (e.g., [19], [17]).

In this paper, we focus on addressing the challenges posed by incomplete data
in visualization recommendation systems. Incomplete data is a pervasive problem
in real-world datasets, as data can be missing for various reasons, such as system
failures, human errors, or unavailability of information. Existing visualization
recommendation systems typically assume that the analyzed data is clean and
complete, which is often not the case in practice. Consequently, there is a pressing
need for robust methods to handle incomplete data and improve the overall
effectiveness of these systems.

A variety of imputation techniques exist for addressing incomplete data, en-
compassing crowd-sourcing platforms like Amazon Mechanical Turk (AMT)3

and CrowdFlower4. These crowd-sourced approaches have been utilized to achieve
data completion or rectification tasks, resulting in high-quality output but re-
quiring substantial human effort. Rule-based cleaning represents an intermediate
solution, wherein human expertise is consulted to formulate cleaning rules while
automating the repair process. An exemplary case is the study conducted in
(e.g., [8], [22]), which demonstrates a user interface for editing cleaning rules
and performing automated cleaning operations. However, in the context of large
datasets, data imputation may prove to be costly and ineffective. As an alter-
native, works such as ImputeDB [7] can be employed to address the challenges
posed by incomplete data in the context of large datasets.

ImputeDB’s core principle posits that imputation requires execution exclu-
sively on data relevant to a particular query, where this subset is often signif-
icantly smaller than the complete database. ImputeDB departs from conven-
tional imputation techniques (e.g., [21], [13], [20]) which generally operate over
the entire dataset. ImputeDB redirects attention from the imputation algorithms
towards the identification of optimal imputation operations that improve query
results, which lies in devising optimization algorithms offering Pareto-optimal
trade-offs between imputation cost and result quality.

In this paper, we share a similar focus with ImputeDB and introduce VizPut,
a scheme that determines which missing cells should be prioritized for imputa-
tion to maximize the efficacy of recommended visualizations. This strategy can
be incorporated with existing crowd-sourcing platforms, enabling analysts to
define their preferred imputation budget. VizPut optimally allocates the impu-
tation budget to preserve the high quality of recommended visualizations while
adhering to the specified budget constraints.

To illustrate the importance of VizPut, consider the scenario of a data analyst
using a crowd-sourcing service or hiring expert to clean their dataset. In many
cases, the budget allocated for data cleaning may be insufficient to cover the
entire process. For instance, the total cost of cleaning all missing cells might be

3 https://www.mturk.com/
4 https://visit.figure-eight.com/People-Powered-Data-Enrichment_T

https://www.mturk.com/
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$10,000, while the data analyst only has a budget of $1,000. VizPut enables the
data analyst to identify which missing values should be imputed first to optimize
the recommendation results within the constraints of their budget, ensuring that
the high quality insights are still accessible despite limited resources.

In addressing this challenge, we introduce three types of VizPut scheme for
selecting missing cells to be imputed, encompassing Cell-aware VizPut, Ranking-
aware VizPut, and a Hybrid that merges the strengths of both Cell-aware VizPut
and Ranking-aware VizPut. These methods accommodate various user prefer-
ences and scheme contexts, providing a versatile and all-encompassing solution
to the difficulties arising from incomplete data in visualization recommendation
systems.

The process of performing data imputation in an insight recommendation
system typically involves executing data cleaning prior to generating insights.
In this context, we propose Cell-aware VizPut approach, which is a heuristic
method that prioritizes the imputation of missing cells based on their impact
on recommendation results (i.e., the number of visualizations affected when the
missing cell is imputed). Consequently, this approach identifies which missing
cells should be imputed first, and these cells are imputed before generating
the top-k visual insights. In this case, we adhere to the traditional approach
grounded in the principle of ”impute-first-insight-next.” Nonetheless, as previ-
ously discussed, our focus aligns with ImputeDB, which posits that imputation
should only be performed on relevant data. In this regard, we propose Ranking-
aware VizPut, a prioritization approach premised on the temporary ranking of
visualizations (i.e., temp-rank). Incomplete data is initially utilized to gener-
ate recommended visualizations, followed by the imputation process based on
the temp-rank until the imputation budget is exhausted. The underlying con-
cept of this approach is that the imputation budget should be prioritized for
candidate top-k insights, necessitating the generation of temp-rank from the in-
complete data first. However, it is important to note that the temp-rank may
be misleading, as it is derived from incomplete data. To address this issue, we
extend Ranking-aware VizPut with an alternative weighting scheme. Finally, we
also propose Hybrid approach that combines both the Cell-aware VizPut and
Ranking-aware VizPut. The Hybrid approach provides the benefits of both Cell-
aware VizPut and Ranking-aware VizPut methods where the imputation budget
is optimized towards the candidate top-k insights (Ranking-aware VizPut), and
the selected missing cells are based on their highest contribution score (Cell-
aware VizPut). In summary, our contributions are:

– We propose the Cell-aware VizPut, an insight-aware selective imputation
technique that prioritizes the imputation of missing cells based on their
impact on recommendation results (Sec. 3.2).

– The Ranking-aware VizPut is proposed as an insight-aware imputation strat-
egy based on temporary ranking that selectively places imputation opera-
tions only on data relevant to the top-k candidate insights (Sec. 3.3).

– We introduce a hybrid approach that combines the strengths of Cell-aware
VizPut and Ranking-aware VizPut (Sec. 3.4).
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– An extensive experimental evaluation on real datasets is conducted to com-
pare the performance of our proposed approaches with baselines (Sec. 4).

2 Preliminaries and Related Work
This section presents an overview for recommending top-k visual insights. Firstly,
we describe the methodology for generating such insights (Sec. 2.1). Subse-
quently, we outline the challenges faced in generating top-k visual insights from
incomplete data and provide a formal problem definition for generating top-k
visual insights from incomplete data (Sec. 2.2).

2.1 Recommending Visual Insights

To recommend visual insights, we consider a complete multi-dimensional dataset
D. The dataset D is comprised of a set of dimensional attributes A and a
set of measure attributes M. Also, let F be a set of possible aggregate func-
tions over measure attributes such as COUNT, AVG, SUM, MIN and MAX. Hence,
specifying different combinations of dimension and measure attributes along
with various aggregate functions, generates a set of possible visualizations V
over D. For instance, a possible visualization Vi is specified by a tuple < Ai,
Mi, Fi >, where Ai ∈ A, Mi ∈ M, and Fi ∈ F, and it can be formally de-
fined as: V i : VISUALIZE bar (SELECT A, F(M) FROM D WHERE T GROUP BY

A). Where VISUALIZE specifies the visualization type (i.e., bar chart), SELECT
extracts the selected columns which can be dimensional attributes A ∈ A or
measures M ∈ M, T is the query predicate (e.g., disease = ’Yes’), and GROUP

BY is used in collaboration with the SELECT statement to arrange identical data
into groups. A visualization Vi is only possible to obtain if the analyst knows
exactly the parameters (e.g., dimensional attributes, measures, aggregate func-
tions, grouping attributes, etc.), which specify some aggregate visualizations that
lead to valuable visual insights. This iterative process of creating and refining
visualizations to uncover valuable insights can be time-consuming. Several so-
lutions for recommending visualizations have recently emerged to address the
need for efficient data analysis and exploration (e.g., [32], [12], [24], [30], [23],
[10], [9], [16], [27], [14]). These solutions generate a large number of possible vi-
sualizations V and rank them based on metrics (e.g., deviation-based approach)
that capture the utility of the recommendations. Finally, top-k visual insights
are recommended to users.

Previous studies (e.g., [32], [31]) have demonstrated the effectiveness of the
deviation-based approach in presenting interesting visualizations that reveal dis-
tinctive trends of analyzed datasets. The deviation-based approach compares an
aggregate visualization generated from the selected subset dataset DQ (i.e., tar-
get visualization Vi(DQ)) to the same visualization if generated from a reference
dataset DR (i.e., reference visualization Vi(DR)). To calculate the outstand-
ing/deviation score, each target visualization Vi(DQ) is normalized into a prob-
ability distribution Pb[Vi(DQ)] and similarly, each reference visualization into
Pb[Vi(DR)]. In particular, consider an aggregate visualization Vi =<A,M,F >.
The result of that visualization can be represented as the set of tuples: <
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sex cp age oldpeak thalach disease
56 Yes

male 114 No

asymptomatic 55 130 Yes

male 144 Yes

male non_anginal_pain 51 No

asymptomatic 186 No

66 0.4 151 Yes

female asymptomatic 50 0 No

52 Yes

non_anginal_pain 48 0.2 139 No

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

x

y

Dimensional attributes Measure attributes

Fig. 1: An example of incomplete data

(a1, g1), (aj , gj), ..., (at, gt)>, where t is the number of distinct values (i.e., groups)
in attribute A, aj is the j-th group in attribute A, and gj is the aggregated
value F (M) for the group aj . Hence, Vi is normalized by the sum of aggre-

gate values G =
t∑

j=1

gj , resulting in the probability distribution Pb[Vi] =<

g1
G , g2

G , ..., gt
G >. Finally, the utility score of Vi is measured in terms of the dis-

tance between Pb[Vi(DQ)] and Pb[Vi(DR)], and is simply defined as: U (Vi) =
dist (Pb [Vi(DQ)] , Pb [Vi(DR)]). The process of generating recommended visual-
izations can be summarized as three layers:

– Generating Visualizations: All possible visualizations are generated from the
selected subset dataset DQ (i.e., target visualization Vi(DQ)) and a reference
dataset DR (i.e., reference visualization Vi(DR)).

– Calculating Importance Score: The deviation-based approach is used to com-
pare the aggregate visualization generated from DQ (i.e., Vi(DQ)) to the
same visualization if generated from DR (i.e., Vi(DR)).

– Ranking and Presenting Recommendations: Visualizations are ranked based
on their importance score, and the top-k visualizations are recommended to
the user.

2.2 Handling Incomplete Data in Visualization Recommendation

Handling incomplete data in visualization recommendation systems is a chal-
lenging task. Our prior work in [25] demonstrates the impact of incomplete data
on visualization recommendation results. A user analyzing data with 20% miss-
ing values will obtain significantly different top-k recommended visualizations
compared to those obtained from a complete dataset, resulting in incorrect in-
sights. Given the prevalence of incomplete data, it is crucial to develop methods
for addressing this challenge.

Consider the incomplete data in Figure 1, which consists of two dimensional
attributes A and three measure attributes M. In the figure, grey cells indicate
incomplete cells, while white cells indicate complete cells. To produce recom-
mended visual analytics of high quality, the imputation must be performed on
the incomplete data before visualizations are generated. As mentioned in Sec. 1,
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data imputation is expensive! Suppose a data analyst has a limited imputation
budget of five cells. The challenge is to select which five cells from the miss-
ing cells in Figure 1 to be imputed in order to maximize the effectiveness of
recommended visualizations.

In this study, it is important to emphasize that we are not proposing a new
data imputation technique. Numerous imputation methods have been developed,
such as Mean Imputation and K-Nearest Neighbor imputation (e.g., [13], [21]).
One example is Clustering-Based Imputation [20], which estimates missing val-
ues using the nearest neighbor within the same cluster constructed based on
non-missing values. More recently, advanced imputation models have adopted
machine learning approaches (e.g., [28], [29]). Generally, these existing imputa-
tion methods operate over the entire dataset, replacing all missing values with
predicted values. However, executing a sophisticated imputation algorithm on a
large dataset can be computationally demanding. For instance, [7] illustrates that
even a relatively simple decision tree algorithm requires nearly 6 hours to train
and run on a database with 600,000 rows. As an alternative to this challenge,
sampling techniques can also be employed in data imputation (e.g., [33], [15]),
allowing for the imputation of only a sample of the data without necessitating
imputation on the entire dataset.

In contrast to prior research, our study emphasizes not on the imputation
techniques themselves, as nearly any such method can be utilized, our emphasis
is on optimally positioning imputation operations within the incomplete data,
with the aim of maximizing the efficacy of the recommended visualizations. In
pursuit of our objective, this paper employs the original complete dataset as
the ground truth data. We create a duplicate of the complete data, introduce
missing values with varying distribution patterns, and refer to this as incom-
plete data. Subsequently, we employ VizPut to impute the missing values in the
incomplete data in accordance with a predetermined imputation budget. It is im-
portant to note that VizPut primarily focuses on prioritizing the missing cells,
with the imputed values sourced from the ground truth data, thereby ensuring
accuracy. Our central aim is to identify the most effective methods concerning
which missing cells should be prioritized in order to achieve optimal effectiveness
of recommendation results

Consider a set of top-k visualizations, denoted as Sc, generated from a multi-
dimensional dataset D. Suppose DI represents an incomplete version of D. To
generate recommended visual analytics, we must impute DI , given an imputa-
tion budget g and the imputed version of DI denoted by Df . For the sake of
discussion, let Sc and Sf be the sets of top-k visualizations from the complete
and imputed data, respectively. To evaluate the priority functions we propose,
we compare the recommended visual analytics Sf derived from the imputed data
Df with the top-k set obtained from the complete data Sc. We employ various
metrics from our prior work [25] to gauge the quality of the recommended visu-
alizations in Sf relative to Sc. First, we apply the Jaccard distance [26], which
assesses the composition of two sets. The Jaccard distance score is determined
by dividing the number of common visualizations by the total number of vi-
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sualizations. Consequently, when applied to set comparison, sets with identical
compositions yield identical similarity scores. Nonetheless, our work considers
the order of visualizations in the top-k set to be crucial. For example, the top-
1 visualization is more significant than the top-10 visualization. Therefore, we
employ the second metric, Rank Biased Overlap (RBO) [34], to account for vi-
sualization ranking while evaluating recommendation quality. RBO takes into
consideration both the composition and ranking of the two sets.

Our objective is to identify way to find the missing values that need to be
imputed first such as that yields recommended visual analytics Sf generated
from the imputed data Df , closely approximating Sc derived from the complete
data D. We can formally define this problem as follows:

Definition 1. Recommending Top-k Visual Insights from Incomplete
Data. Given a set of top-k visualizations Sc generated from the complete data D,
let DI represent an incomplete version of D and g denote the imputation budget.
The objective is to select and impute g missing cells to create an imputed data
version Df of DI , such that the effectiveness of the recommended visualizations
generated from Df closely approximates the effectiveness of Sc.

In order to address the problem defined in Definition 1, we propose VizPut,
which comprises various variants of priority functions, described in the following
subsections. It is important to note that the symbols used in this paper are
summarized in Table 1.

3 VizPut: Insight-Aware Imputation of Incomplete Data
for Visualization Recommendation

In this section, we first discuss our baseline solutions for missing cells selection
(Sec. 3.1). Then, we present our proposed approach Cell-aware VizPut (Sec. 3.2)
and Ranking-aware VizPut (Sec. 3.3).

3.1 Baseline Solutions

Consider the incomplete data in Figure 1, suppose a data analyst has a limited
imputation budget of five cells. The challenge is to select which five cells from
the missing cells in Figure 1 to be imputed. We define three baseline methods
as follows:
– No Imputation: In this approach, recommended visualizations are generated

from incomplete data without any imputation. The cost of imputation is
zero since the budget is not utilized, but the effectiveness of recommended
visualizations may be low due to missing values.

– Random Selection Imputation: In this approach, five missing cells are ran-
domly selected for imputation from the incomplete data. The effectiveness
of recommended visualizations may be better compared to No Imputation
as the number of missing cells is lower, but the imputation cost will still be
higher than No Imputation.
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Table 1: Table of symbols

Symbols Description

k the size of top-k recommended views
S set of views
V set of all possible views
A a dimensional attribute
M a measure attribute
F aggregate function
Q a user query
D a multi-dimensional database
DQ a target subset of DB

DR a reference subset of DB

DI an incomplete data version of DB

g imputation budget
Df an imputed data version of DI

Vi a view query
Cx,y a cell with x represents row and y represents column
P (Cx,y) priority function can be a single function or a combination of two or more functions
N(Cx,y) contribution score of a missing cell Cx,y

F (Cx,y) fairness score of a column that mapped to a missing cell Cx,y

R(Cx,y) ranking score of visualization that mapped to a missing cell Cx,y

R̂(Cx,y) ranking and weighting score of visualization that mapped to a missing cell Cx,y

– Fairness Imputation: This approach involves selecting five missing cells based
on a higher ratio of missing cells in a column. To elaborate, prior to choosing
a missing cell, a fairness score is computed for each column. This score can
be determined by calculating the ratio of the number of missing cells to the
total number of cells within a given column. In every iteration, a missing cell
is selected from the column exhibiting the highest fairness score.

3.2 Cell-aware VizPut

The concept behind Cell-aware VizPut is selecting missing cells based on their
maximum contribution to the recommendation results. In this work, we pro-
pose some variants of Cell-aware VizPut, including VizPut-Cell, VizPut-Cell(f),
VizPut-Cell(f, v), which will be explained subsequently.

VizPut-Cell The VizPut-Cell is a heuristic priority function for selecting miss-
ing cells based on their maximum contribution to the recommendation results.
The contribution of a cell is quantified by counting the number of visualizations
associated with it.

Consider Cx,y, which represents a cell with x as the row number and y as
the column number, where x = 1, 2, .., 10 and y = 1, 2, .., 5. Let â represents the
number of complete cells in Ax and m̂ represents the number of complete cells in
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sex cp age oldpeak thalach disease
0.33 0.33 56 0 0 Yes

male 0 0.33 0.33 114 No

0.66 asymptomatic 55 0.33 130 Yes

male 0.33 0.33 0.33 144 Yes

male non_anginal_pain 51 0.66 0.66 No

0.33 asymptomatic 0.33 0.33 186 No

1 1 66 0.4 151 Yes

female asymptomatic 50 0 0.66 No

0.33 0.33 52 0 0 Yes

1 non_anginal_pain 48 0.2 139 No

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

x

y

Dimensional attributes Measure attributes

Fig. 2: The example of incomplete data

Mx. The contribution score of Cx,y, denoted asN , is calculated as the normalized
of number of corresponding visualizations Vi to Cx,y, which is formally defined
as:

N(Cx,y) =
m̂

max(â, m̂)
, where Cx,y ∈ A | N(Cx,y) =

â

max(â, m̂)
, where Cx,y ∈ M

(1)
The priority function P (Cx,y) in VizPut-Cell is defined as:

P (Cx,y) = N(Cx,y) (2)

In this equation, P (Cx,y) represents the priority score of cell Cx,y, while
N(Cx,y) denotes its contribution score to the recommendation results.

For instance, as depicted in Figure 2, the columns y comprise two-dimensional
attributes A (i.e., sex, cp) and three measure attributes M (i.e., age, oldpeak,
thalach). Let us consider C1,1, with (x = 1, y = 1), as an example. The priority
score of P (C1,1) equals 0.33, as the cell C1,1 possesses a single contribution owing
to its association with only one complete cell in M, specifically, age = 56. Imput-
ing C1,1 would impact a single visualization, V1 =< sex, F (age) >. The priority
score 0.33 originates from the normalized contribution score, 1

3 , where 1 denotes
the contribution score m̂ and 3 represents the maximum contribution scores
max(â, m̂) from the incomplete data DI . Conversely, cells with the highest con-
tribution (i.e., a score of 1), such as C7,1, C7,2, and C10,1, have three contribution
scores each, as imputing them can influence multiple visualizations. For instance,
C7,1 contributes to V1 =< sex, F (age) >, V2 =< sex, F (oldpeak) >, and V3 =<
sex, F (thalach) >; C7,2 affects V1 =< cp, F (age) >, V2 =< cp, F (oldpeak) >,
and V3 =< cp, F (thalach) >; and C10,1 contributes to V1 =< sex, F (age) >,
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Algorithm 1: VizPut-Cell algorithm

Input: Incomplete data DI , imputation budget g
Output: Imputed data Df

1 A← get all dimensional attributes from DI

2 M← get all measures attributes from DI

3 Cx,y ← a missing cell(row i, column j) on DI

4 Df ← DI

5 N ← 0
6 Function VizPutBasedOnCell(DI):
7 if Cx,y in A then
8 get the number of corresponding visualizations (N)
9 N ← count complete cells in Mx;

10 else
11 N ← count complete cells in Ax;
12 end
13 return Cx,y, N

14 End Function
15 while g != 0 do
16 Cx,y ← argmax(V izPutBasedOnCell(DI))
17 Df .impute (Cx,y)
18 DI ← Df

19 g − = 1

20 end
21 return Df

V2 =< sex, F (oldpeak) >, and V3 =< sex, F (thalach) > (Algorithm 1 line 9
and 11).

Assuming the data analyst has a limited budget for missing cell imputation
(i.e., g = 5), missing cells with the highest priority score of 1, such as C7,1, C7,2,
and C10,1, will be chosen. The subsequent candidates for missing cell selection
have a score of 0.66, encompassing C3,1, C5,4, C5,5, and C8,5. Given that the
budget allows for only five cells, just two cells with a 0.66 score can be selected.
In this scenario, the selection is based on random.

A limitation of VizPut-Cell arises when the dataset exhibits an extreme im-
balance between the sizes of |A| and |M|. This imbalance may result in certain
attributes being less imputed or not imputed at all compared to others. For in-
stance, consider incomplete data containing a single dimensional attribute A and
numerous measure attributes M. Even with an equal distribution of missing val-
ues across all columns, Algorithm 1 assigns a higher priority to the dimensional
attribute due to the nature of the view generated from the combination of A and
M. Consequently, given the limited imputation budget, one or more attributes
may be less imputed or not imputed at all. To tackle this challenge, we augment
the priority score P of VizPut-Cell by incorporating a fairness parameter. This
parameter bears similarity to the Fairness Imputation employed in the baselines,
which is detailed in the subsequent section.
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Fairness Awareness in VizPut-Cell Recall that the limitation of the VizPut-
Cell method is that it may result in one attribute being either never imputed or
less imputed compared to others, especially when |A| and |M| are unbalanced. To
address this issue, we extend the VizPut-Cell with a fairness parameter, resulting
in the VizPut-Cell(f) approach. This Fairness parameter bears similarity to the
Fairness Imputation employed in the baselines. The fairness parameter aims to
distribute the imputation budget evenly among all columns in DI . The fairness
score is calculated based on the ratio of missing cells to total cells in a column.
Thus, a column with a higher ratio of missing cells will have a higher priority
score compared to a column with a lower ratio of missing cells.

We define F as the fairness parameter, which represents the normalized of
ratio of the quantity of missing cells to the overall number of cells in a column.
Let us denote Cy as the quantity of missing cells within column y and Ty as the
total cell count within the same column. Consequently, we can express F in the
following condensed form:

F (Cx,y) =

Cy

Ty

max(
Cy

Ty
)

(3)

To illustrate, consider Figure 2, wherein the incomplete data comprises five
columns, y = 1, 2, 3, 4, 5, each with respective

Cy

Ty
scores y1 = 6

10 , y2 = 5
10 ,

y3 = 3
10 , y4 = 7

10 , and y5 = 6
10 . Here, column y4 (oldpeak) possesses the high-

est
Cy

Ty
score, attributable to its extensive number of missing cells. Therefore,

in the initial imputation iteration, all missing cells within the oldpeak column
are assigned a fairness score F (Cx,4) = 0.7/max(

Cy

Ty
) = 1. This fairness score

undergoes modification with each iterative imputation of cells.
To define the priority function of VizPut-Cell(f), we extend the priority func-

tion of VizPut-Cell. The priority score for a single missing cell Cx,y in VizPut-
Cell(f) is defined as:

P (Cx,y) = N(Cx,y)× F (Cx,y) (4)

In this equation, P (Cx,y) represents the priority score of Cx,y, N(Cx,y) de-
notes its contribution score to the recommendation results, and F (Cx,y) is the
fairness score indicating the missing rate in the column of Cx,y. By incorporat-
ing the fairness score, the column with more missing cells will have a higher
priority to be imputed first. Note that the priority function P (Cx,y) can be ex-
pressed either as a singular function or a combination of two or more functions
(Equation 4), where multiplication is utilized as the combining operator. While
addition can also be used in lieu of multiplication, since that both operators
produce similar results as the priority scores of the missing cells will ultimately
be ranked, and the selection of the missing cells will be based on priority scores
in descending order.

Impact of target and reference views in VizPut-Cell In this section,
we present the impact of number used visualizations in the different settings of
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target and reference subsets. As described in Sec. 2, recommended visualizations
are generated by comparing a view from the target subset Vi(DQ) to a view from
the reference subset Vi(DR). There are three common scenarios for the target
versus reference subset settings, which are:

1. Target subset is a subset of reference subset and reference data is the entire
dataset, i.e., DQ ⊂ DR, DR = D. For example, in a heart disease dataset,
DQ : disease = Yes and DR : whole data;

2. Target and reference subsets are different subsets, and there is no other
subset available, i.e., DQ∪DR = D. For example, in a heart disease dataset,
DQ : disease = Yes and DR : disease = No. As the disease attribute has
only two categories, i.e., [Y es,No], there are only two subsets that can be
generated based on the disease predicate;

3. Target and reference subsets are different subsets, and there is another subset
available, i.e., DQ ∪DR ̸= D. For example, in a heart disease dataset, DQ :
cp = typical angina and DR : cp = atypical angina. The cp attribute has
four categories, and hence, other subsets such as DR : cp = non anginal pain
and DR : cp = asymptomatic are available.

To handle these three cases, we propose two variants of VizPut-Cell, namely
VizPut-Cell(v) and VizPut-Cell(f, v). The objective of these approaches is to
evaluate the impact of the number of used visualizations, V , in different target
vs. reference subset settings. Consider that v̂ is the frequency of a view being
used, such as once, twice, or not at all. V reflects the normalized frequency of a
view being used, which can be defined as:

V (Cx,y) =
v̂

max(v̂)
(5)

For instance, in the first case, cells belonging to the target subset DQ have
v̂ = 2 since they are used in both the target and reference subsets, as DQ ⊂ DR.
On the other hand, cells belonging to the reference data DR that are not in DQ

have v̂ = 1. In the third case, cells belonging to cp = non anginal pain and cp
= asymptomatic have v̂ = 0 since they are not used in any computation. Those
v̂ values are then divided by the max(v̂) to obtain V .

To incorporate this V parameter, we extend the priority function P (Cx,y)
of VizPut-Cell and VizPut-Cell(f). Therefore, the overall priority function of
VizPut-Cell(v) is defined as:

P (Cx,y) = N(Cx,y)× V (Cx,y) (6)

Meanwhile, the overall priority function of VizPut-Cell(f, v) is defined as:

P (Cx,y) = N(Cx,y)× F (Cx,y)× V (Cx,y) (7)

In these equations, P (Cx,y) represents the overall priority score, N(Cx,y) is
the contribution score, F (Cx,y) is the fairness score, and V (Cx,y) is the normal-
ized number of used views.



VizPut: Insight-Aware Imputation of Incomplete Data for VizRec 13

sex cp age oldpeak thalach
0.67 0.67 56 0.67 0.67
male 0.66 0.66 0.66 114

0.6 asymptomatic 55 0.6 130

male 0.66 0.66 0.66 144

male non_anginal_pain 51 0.6 0.6

0.49 asymptomatic 0.49 0.49 186

0.75 0.75 66 0.4 151

female asymptomatic 50 0 0.5
0.67 0.67 52 0.67 0.67
0.5 non_anginal_pain 48 0.2 139

1

2

3

4

5

6

7

8

9

10

1 2    3       4        5

x

y
Dimensional attributes Measure attributes

rank View rank score (zi) w

1 <cp, AVG(oldpeak)> 6 1

2 <cp, AVG(thalach)> 5 1

3 <sex, AVG(oldpeak)> 4 1

4 <cp, AVG(age)> 3 1

5 <sex, AVG(thalach)> 2 1

6 <sex, AVG(age)> 1 1

Column Total Score Normalized 
score (z̄y)

sex 4+2+1=7 0.5

cp 6+5+3=14 1

age 3+1=4 0.285

oldpeak 6+4=10 0.714

thalach 5+2=7 0.5

sex, cp, oldpeak, thalach (0.5+1+0.714+0.5)/4 0.67

cp, age, oldpeak (1+0.285+0.714)/3 0.66

sex, oldpeak (0.5+0.714)/2 0.6

oldpeak, thalach (0.714+0.5)/2 0.6

age, oldpeak (0.285+0.714)/2 0.49

sex, age, oldpeak (0.5+0.285+0.714)/3 0.49

sex, cp (0.5+1)/2 0.75

DI

Ranking 
Score (zi)

Normalized score (z̄y)

Fig. 3: VizPut-Ranking score illustration

3.3 Ranking-aware VizPut

The fundamental premise of the Cell-aware VizPut method is to tackle incom-
plete data prior to generating insights, aiming to enhance the quality of recom-
mended visualizations. For instance, the selection of missing cells in VizPut-Cell
is based on the count of visualizations that are affected when the cell is imputed.
However, it remains unclear whether the chosen cell is pertinent to the candi-
date top-k insights. As a result, we introduce an alternative approach, Ranking-
aware VizPut. In this method, imputation is performed on the candidate top-k
insights. To obtain these candidate insights, the top-k visual insights must be
generated from the incomplete data temp-rank, despite the awareness that such
rankings might be misleading. This approach adheres to the insight-first-impute-
next strategy, in contrast to VizPut-Cell, which follows the impute-first-insight-
next approach. Ranking-aware VizPut includes two variants: VizPut-Ranking
and VizPut-Ranking(w), which will be further elucidated subsequently.

VizPut-Ranking Consider a data analyst working with incomplete data DI

and an imputation budget g. Initially, a temporary insight, temp-rank, is derived
directly from DI . Subsequently, each view Vi is assigned a ranking score zi,
reflecting its importance score, and temp-rank is sorted in descending order
based on zi (refer to the Ranking Score table in Figure 3). Following this, the
ranking scores of the visualizations are mapped to the incomplete data DI .

To map the ranking score of a visualization to the priority score of a miss-
ing cell, each visualization is broken down to the column y level. As depicted
in the Normalized Score table of Figure 3, both dimensional and measure at-
tributes occur multiple times in temp-rank. Thus, the ranking score of a column
ẑy is computed by summing the rank score zi and normalizing by the highest
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column’s ranking score (alternative normalization functions, such as max-min
normalization, can be employed). Normalization ensures that the priority score
is bounded by 1.

Once each dimension (i.e., column) has a normalized score, denoted as ẑy,
the priority score for each missing cell Cx,y in DI is calculated based on the
value of ẑy and the number of missing cells in row x, represented by R. This can
be defined as follows:

If there is only a single missing cell in row x, then:

ẑy =

∑|y|
y=1 zi

max(
∑|y|

y=1 zi)
, R(Cx,y) = ẑy (8)

If multiple missing cells are in row x, then:

R(Cx,y) =

∑|y|
y=1 ẑy

|y|
(9)

.
Hence, we introduce VizPut-Ranking, a method that directly generates temp-

rank and uses it to map the priority of the missing cells to be imputed, even
though temp-rank may be misleading. The priority function P (Cx,y) for a missing
cell in the VizPut-Ranking method is defined as:

P (Cx,y) = R(Cx,y) (10)

In this equation, P (Cx,y) represents the priority score of Cx,y, while R(Cx,y)
denotes the normalized ranking score of the visualization related to Cx,y (as
described in Equations 8 and 9).

To provide a clear illustration of the proposed approach, consider the example
of cell C10,1, located in column 1, row 10, with a priority score of 0.5. This score
arises because there is only one missing cell in row 10. Thus, the priority score is
calculated by summing zi from the ”sex” column. Three visualizations include
the ”sex” attribute, with values z3 = 4, z5 = 2, and z6 = 1, resulting in a total
of 7. To normalize the value to 1, this total is divided by the maximum total
score ẑy, which is 14.

As another example, consider cell C1,y in the first row, which has four missing
cells corresponding to the columns ”sex”, ”cp”, ”oldpeak”, and ”thalach”. The
priority scores of these missing cells are first calculated based on the column
scores (refer to the normalized score table ẑy), where the columns ”sex”, ”cp”,
”age”, ”oldpeak”, and ”thalach” have scores of 7, 14, 4, 10, and 7, respectively.
Consequently, to calculate the priority score of C1,y, the scores of the columns
”sex”, ”cp”, ”oldpeak”, and ”thalach” are summed and then divided by the
number of those columns. This results in a ẑy score for C1,y of 0.5+1+0.714+0.5

4 =
0.67

As depicted in Figure 3, given a single imputation budget constraint, the
missing cells warranting prioritization include C7,1 and C7,2. Both of these cells
exhibit the highest priority score, R(Cx,y), valued at 0.75. In instances where
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Algorithm 2: VizPut-Ranking Algorithm

Input: Incomplete data DI , imputation budget g, views k, ranking weight w
Output: Imputed data Df

1 V← generate views from DI , k ← 10
2 Cx,y ← a missing cell(row i, column j) on DI

3 w ←{1:VizPut-Ranking, 2:VizPut-Ranking(w)}
4 Function VizPutBasedOnTemporaryRanking(DI , k, w, g):
5 if w = 2 then
6 S ← get top-k views from (V)
7 generate ranking score of each view (Figure 3)
8 map ranking score (S × linear increase, V\S × linear decrease)

9 calculate R̂(Cx,y), normalize and distribute to missing Cx,y

10 end
11 else

12 map ranking score V× 1, calculate R̂(Cx,y) normalize and distribute to
missing Cx,y

13 end
14 CS ← get all highest score Cx,y with the size of g
15 return CS

16 End Function
17 CS ← V izPutBasedOnTemporaryRanking(DI , k, w, g))
18 Df .impute (CS)
19 return Df

multiple missing cells share the highest score, a random selection process is
employed. A detailed account of this methodology is provided in Algorithm 2.

In the VizPut-Ranking approach, an advantage emerges through the strate-
gic allocation of imputation resources towards missing cells associated with the
prospective top-k insights. Nevertheless, this approach is not devoid of draw-
backs. Owing to the fact that the temp-rank and candidate top-k insights are
derived from the incomplete dataset DI , the temp-rank is susceptible to inac-
curacies, such as incorrect ranking order, as a result of the presence of missing
values within DI .

This phenomenon consequently results in an increased probability of imput-
ing missing cells associated with the top-k on the temp-rank. As the VizPut-
Ranking approach calculates the priority score of a missing cell based on the
ranking score of its corresponding visualization, it may lead to the imputation
of missing cells linked to top visualizations that consistently maintain their high-
ranking positions, thereby consuming the imputation budget g without signif-
icantly enhancing the recommendation accuracy. Additionally, there exists a
possibility that certain visualizations, initially positioned below the top-k, may
exhibit a high potential for promotion to the top-k set, while some visualizations
nearing the bottom of the top-k set could face exclusion. This observation fur-
ther underscores the limitations of the VizPut-Ranking technique in the context
of achieving optimal imputation priority outcomes.

In order to address this challenge, we propose an alternative weighted schema
for visualizations within the temp-rank, denoted as VizPut-Ranking(w). This
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1.0

0.0

k

w = 1.0 
1.0

0.0

k

w w

VizPut-Ranking VizPut-Ranking(w)

Vn

wi = α∗ rank(Vi ) + b, 
α=0, b=1

Vn

if Vi ≤ k
w = linear increase
wi = α∗ rank(Vi )+ b, α>0

if Vi > k
w = linear decrease
wi = α∗ rank(Vi ) + b, α<0

Fig. 4: VizPut-Ranking vs VizPut-Ranking(w) illustration

model accommodates varying weights based on the position or ranking of the
visualization. The details of this approach will be discussed in the subsequent
section.

Weighted VizPut-Ranking Consider the scenario in which a data analyst
is dealing with incomplete data DI and has an imputation budget of g. Ini-
tially, a provisional insight, termed temp-rank, is extracted directly from DI .
Subsequent to this, each view Vi is attributed a ranking score zi, representing
its significance. The temp-rank is then organized in descending order accord-
ing to the zi values (please refer to the Ranking Score table in Figure 3). In
the context of the VizPut-Ranking method, the weighting of the visualization is
consistently maintained at a value, indicating that no differential weighting is
applied; specifically, wi = 1.0 where wi is the weight of each Vi and zi = zi×wi.
As a result, the imputation priority is exclusively determined by the ranking
score of the temp-rank, generated based on the incomplete dataset DI . However,
the reliability of this ranking could be subject to scrutiny as it is derived from
the incomplete dataset DI .

In order to enhance the VizPut-Ranking method, we introduce an extension
that assigns weight to each visualization within the temp-rank, designated as
VizPut-Ranking(w). As a result, the imputation priority is determined by the
product of the ranking score of visualization zi and weight wi. In the VizPut-
Ranking(w) model, it is posited that top visualizations, such as top-1 or top-2,
typically remain at the top, and therefore, should be assigned a lower weight.
Conversely, visualizations situated near the end of the top-k set ought to be
allocated a higher weight due to their potential for rank fluctuation.

In this model, the weight wi follows a linearly increasing trend if Vi ≤ k and
a linearly decreasing trend if Vi > k. Both linear increase and decrease conform
to the linear model function. The linear increase in weight is defined as:

wi = α× rank(Vi) + b (11)
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where α > 0. At the same time, the decrease in weight is defined as:

wi = α× rank(Vi) + b (12)

where α < 0. The overall graph displays an inverted-U shape, as depicted in
Figure 4. The figure illustrates the differing weight distributions: VizPut-Ranking
employs a constant weight, while VizPut-Ranking(w) manifests an inverted-U
weight distribution.

The mapping method from the ranking results to cells in VizPut-Ranking(w)
is done using the same method as in VizPut-Ranking. However, to calculate ẑy,
the zi score is multiplied by wi as defined in:

ẑy =

∑|y|
y=1 zi × wi

max(
∑|y|

y=1 zi × wi)
(13)

In the VizPut-Ranking(w) model, the coefficients α and b are utilized to
ensure that the weights adhere to a linear model. Since the values of ẑy are
normalized, the choice of α and b is quite flexible, acting as scaling factors.
We can use any values of α and b that meet the criteria: α > 0 for a linear
increase and α < 0 for a linear decrease. The model will yield equivalent re-
sults post-normalization, as these coefficients primarily serve to shape the initial
distribution of the weights. Consider the scenario where the number of visualiza-
tions, denoted as V, equals 100 and let k = 10. For the phase of linear increase,
we assign α = k and β = 0. Consequently, the values of wi range from 10 to
100, increasing linearly when k varies from 1 to 10. Subsequently, in the phase of
linear decrease, we allocate values α = −1 and β = |V|+k, resulting in β = 110.
By establishing these parameters, the values of wi decrement linearly, commenc-
ing at 99 when k = 11, and terminating at 10 when k = 100. This results in a
U-shaped distribution of the values of wi.

Finally, the priority function for the VizPut-Ranking(w) approach is defined
as:

P (Cx,y) = R̂(Cx,y) (14)

where R̂(Cx,y) represents the weighted ranking score of the missing cell.

3.4 Hybrid approach

In the present study, we propose a hybrid approach that integrates the VizPut-
Ranking(w) and VizPut-Cell(f) algorithms with the objective of enhancing the
performance in handling incomplete data within visualization recommendation
tasks. Initially, this hybrid strategy generates a temporary rank from the incom-
plete dataset, followed by the computation of the priority score for each missing
cell, based on a combination of the VizPut-Ranking(w) and VizPut-Cell(f) al-
gorithms.

The priority score within the Hybrid approach is defined as follows:
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P (Cx,y) = R̂(Cx,y)×N(Cx,y)× F (Cx,y) (15)

Here, N(Cx,y) represents the contribution score of the cell to the recommen-

dation results, F (Cx,y) is the fairness score, and R̂(Cx,y) denotes the weighted
ranking score of the visualization associated with the missing cell. The effective-
ness of our hybrid approach is evaluated and presented in Section 4.

3.5 VizPut Optimization

To explain the cost of VizPut, consider Figure 5, which compares the overall cost
of Cell-aware VizPut, Ranking-aware VizPut, and Hybrid. As shown in Figure 5,
the total cost to generate the recommendation results is the sum of the data
cleaning cost Cc and the insight processing cost Ci. Specifically, the data cleaning
cost Cc comprises two components:

1. Cleaning fees Cf : These might entail both monetary and temporal expen-
ditures, especially if the data analyst employs experts to rectify incomplete
data.

2. Computation of the priority score for the missing cell Cp: This represents
the selection of the missing cell. The cost varies depending on whether we
utilize Cell-aware VizPut, Ranking-aware VizPut, or Hybrid.

The discrepancy in Cp across the different VizPut approaches arises from
the distinct priority function calculations inherent to each approach. For in-
stance, the calculation of the priority score for missing cells in Hybrid is given
by P (Cx,y) = R̂(Cx,y) × N(Cx,y) × F (Cx,y), whereas in VizPut-Ranking it is
P (Cx,y) = R(Cx,y). Consequently, the cost of missing cell selection Cp for Hy-
brid will be greater than that for VizPut-Ranking, as Hybrid requires calcula-
tions considering both fairness and the impact of the cell.

In addition, the insight processing cost Ci encompasses all processes required
to generate recommended visualizations. According to Figure 5, the main dif-
ference in cost between our proposed approaches lies in the number of times
insights are generated. For instance, the Cell-aware VizPut variants generate
insights only once, as they follow the impute-first-insight-next approach, where
recommended visualizations are produced after the data cleaning process is com-
pleted. In contrast, the Ranking-aware VizPut variants generate insights twice,
as they follow the insight-first-impute-next approach. In this approach, the top-
k candidate insights, referred to as temp-rank, are generated first, incurring an
additional cost Ct, followed by imputation based on the temp-rank, and finally,
recommended visualizations are produced Ci. Since the hybrid approach con-
structs the temp-rank from incomplete data prior to any data cleaning, analo-
gous to Ranking-aware VizPut, its total cost for generating recommendations is
akin to that of Ranking-aware VizPut. However, the data cleaning cost Cc for
the Hybrid approach diverges from Ranking-aware VizPut due to variations in
Cp.
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DI
Insight processing Cost Ci

Recommendation 
Result

Total cost for generating 
recommended visualizations

Temporary insight 
processing Cost Ct

The cost of Ranking-aware VizPut variant / Hybrid approach

DI
Insight processing Cost Ci

Recommendation 
Result

Total cost for generating 
recommended visualizations

Data Cleaning Cost Cc
Cc = Cf+ Cp

The cost of Cell-aware VizPut variant approach

Total cost for generating 
temporary top-k visualizations 

(temp-rank)

Total cost for data cleaning
● Cf :Cleaning fee ($) + time 

(hours)
● Cp :Insight-aware approach 

for missing cells selection

Data Cleaning Cost Cc
Cc = Cf+ Cp

Total cost for data cleaning
● Cf :Cleaning fee ($) + time 

(hours)
● Cp :Insight-aware approach 

for missing cells selection

Fig. 5: The cost comparison of Cell-aware VizPut, Ranking-aware VizPut, and
Hybrid

To avoid fully computing Ci, especially for the Ranking-aware VizPut vari-
ants and Hybrid — given that both approaches first generate temp-rank which
incurs a cost Ct comparable to Ci — we propose several optimization strategies
to selectively determine which visualizations should be regenerated a second
time:

1. no-opt / baseline: This approach involves regenerating all visualizations
a second time, doubling the expense of insight generation. While this base-
line method maximizes effectiveness by regenerating all visualizations post-
imputation, it comes at a substantial cost.

2. top-k: Only visualizations of size k, as defined by the user, are regenerated a
second time. Thus, the top-k from temp-rank will be regenerated. The order
of visualizations might change following by the improvement of effective-
ness, but those visualizations beyond the top-k will not be re-executed, even
though they might have a chance to join the top-k following imputation.

3. top-k highest imputed: Only the top k visualizations that received the
highest number of imputed cells will be regenerated a second time.

4. top-k + top-k highest imputed: This method combines the previous two.
The top-k visualizations often overlap with those that receive the highest im-
putation. For generating the final recommendation results, the visualizations
from both categories are combined, and the top k from this combined set are
selected and recommended to the user. In this work, we rely on this method
for both Ranking-aware VizPut variants and Hybrid.

The experimental results related to these optimizations can be found in Sec-
tion 4.

4 Experimental Evaluation
In this section, we first discuss our experimental testbed (Sec. 4.1). Then, we
present and discuss our experimental evaluation. (Sec. 4.2).
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4.1 Experimental Testbed

Datasets: We conduct experiments on the following datasets: (1) The Cleveland
Heart Disease dataset, which comprises 8 dimensional attributes, 6 measures [3].
(2) The New York Airbnb dataset, which comprises 4 dimensional attributes,
4 measures, and 30,249 tuples [4]. (3) The Diabetes 130 US Hospital dataset,
which consists of 14 dimensional attributes, 13 measures, and 100,000 tuples [2].
Although we perform experiments on all three datasets, the Cleveland Heart
Disease dataset is used as the default dataset for presenting results in this paper
due to space limitations. The overall priority function P (Cx,y) can be expressed
as a single function or as a combination of two or more functions, utilizing
multiplication as the combining operator. Alternatively, we can resort to using
addition, which would yield comparable results due to the fact that the priority
scores of missing cells are eventually ranked. The selection of these cells is then
based on descending order of these priority scores.
Incomplete data: We simulate missing data using the completely at random
(MCAR) method with respect to the entire dataset. In this experiment, we create
an incomplete version of the data, DI , from the original dataset D. In order to
avoid bias, 100 versions of DI with different random missing seeds are generated.
Imputed data: In our research, we start with a clean dataset and introduce
missing values, while retaining the ground truth data. This approach allows us to
evaluate the effectiveness of our priority function in determining which missing
cells should be imputed first. The imputed values are considered 100% correct,
as they are based on the ground truth data.
Effectiveness Metrics: We employ Jaccard and Rank Biased Overlap (RBO)
metrics from our previous work [25] to evaluate the effectiveness of our proposed
approaches. These metrics are utilized to compare the recommended visualiza-
tions generated from incomplete data with those generated from imputed data
using our proposed methods.
Default parameters: The default parameters used in our evaluation are k =
10, with 20% of missing data, a maximum imputation budget of 10% relative
to the number of missing cells, and effectiveness measurements of Jaccard and
RBO. The default data cleaning method is ignore cell, and the default dataset
is the Cleveland Heart Disease dataset. The final results are the average of
100 versions of DI and are presented with a confidence interval of CI = 0.95.
Common aggregate functions such as AVG, SUM, MAX, MIN are used. We utilized
various query predicates T in the experiment to ensure the reliability of the
recommendation results.
The list of implemented algorithms and their associated priority func-
tions:

– No Imputation, Random selection imputation, Fairness imputation: Baseline
refers to Sec. 3.1

– Cell-aware VizPut
• VizPut-Cell : P (Cx,y) = N(Cx,y)
• VizPut-Cell(f): P (Cx,y) = N(Cx,y)× F (Cx,y)
• VizPut-Cell(v): P (Cx,y) = N(Cx,y)× V (Cx,y)
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• VizPut-Cell(f, v): P (Cx,y) = N(Cx,y)× F (Cx,y)× V (Cx,y)

– Ranking-aware VizPut

• VizPut-Ranking : P (Cx,y) = R(Cx,y)

• VizPut-Ranking(w): P (Cx,y) = R̂(Cx,y)

– Hybrid : P (Cx,y) = R̂(Cx,y)×N(Cx,y)× F (Cx,y)
Where P is the overall priority score, N is the contribution score of the cell to
the recommendation results, F is the fairness score, V is the number of used
views, R is the ranking score of the visualization associated to the missing
cell, and R̂ is the ranking of the visualization and the weighted ranking
associated with the missing cell. In addition, the final recommendation for
both VizPut-Ranking(w) and Hybrid is generated using the top-k + k-highest
imputed approach for optimization.

4.2 Experimental Evaluation

Effectiveness Comparison of VizPut-Cell and VizPut-Cell(f) to Base-
lines. In this experiment, we evaluate the effectiveness of our proposed methods,
VizPut-Cell and VizPut-Cell(f), in comparison to the baselines of No Imputa-
tion, Random Selection Imputation, and Fairness Imputation. The comparison is
illustrated in Figure 6 using various effectiveness measurements. Both VizPut-
Cell and VizPut-Cell(f) surpass the baselines in performance, irrespective of
whether the Jaccard or RBO metric is employed for effectiveness evaluation,
with VizPut-Cell(f) exhibiting superior performance in relation to VizPut-Cell.
The results are derived from experiments conducted on the heart disease dataset,
wherein the number of dimensional attributes exceeds the number of measure
attributes, resulting in VizPut-Cell(f) outperforming VizPut-Cell (as detailed in
Sec. 3.1).
Impact of k on VizPut-Cell and VizPut-Cell(f). The impact of the pa-
rameter k on VizPut-Cell and VizPut-Cell(f) is demonstrated in Figure 7. In
general, the effectiveness rises with increasing values of k. Figure 7c displays
a comparison of the effectiveness using Jaccard and RBO metrics. A crossover
between RBO and Jaccard is evident. For small values of k (e.g., 5, 10), Jaccard
underperforms in comparison to RBO. However, for larger k values (e.g., > 20),
Jaccard outperforms RBO. This occurs because higher k values lead to increased
effectiveness according to Jaccard, but not necessarily according to RBO. The
Jaccard score equals 1 when k = |V|, meaning that the number of k is equal
to the number of candidate visualizations. In contrast, the RBO score can only
equal 1 if the visualizations within the top-k sets appear in the same order,
which is challenging to achieve. Consequently, augmenting the value of k does
not guarantee enhanced effectiveness in terms of RBO.
Effect of Fairness on Proposed Algorithms. Figure 8 evaluates the perfor-
mance of our proposed algorithms with and without fairness, considering var-
ious sizes of |A| and |M| as well as datasets. The experimental results reveal
the following observations: 1) VizPut-Cell surpasses VizPut-Cell(f) when the
sizes of |A| and |M| are identical; 2) under extreme conditions, such as when
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(a) Jaccard (b) RBO (c) Jaccard vs. RBO

Fig. 6: The performance of VizPut-Cell and VizPut-Cell(f) compared to base-
lines on heart disease dataset with different effectiveness measurements

(a) Jaccard (b) RBO (c) Jaccard vs RBO

Fig. 7: Impact k on VizPut-Cell over heart disease dataset with different effec-
tiveness measurements

(a) Heart disease dataset,
|A| = 4, different |M|

(b) Diab dataset, |A| = 6,
different |M|

(c) Diab dataset, |M| = 6,
different |A|

Fig. 8: VizPut-Cell vs VizPut-Cell(f), distance metric: RBO, with different set-
tings of |A| and |M|, and different datasets

|A| is small and |M| is large, VizPut-Cell(f) exhibits superior performance com-
pared to VizPut-Cell. The rationale behind these findings is that VizPut-Cell
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(a) Case 1: DQ ⊂ DR (b) Case 2:DQ ∪DR = D (c) Case 3:DQ ∪DR ̸= D

Fig. 9: The impact of UsedView parameter V

selects missing cells based on their maximum contribution to the recommenda-
tion results (as described in Sec. 3.1), potentially leading to an imbalance in
imputation under extreme conditions. Moreover, VizPut-Cell(f) demonstrates
consistent performance across all conditions, including extreme ones. Therefore,
it is advisable to employ VizPut-Cell(f), particularly when the number of di-
mensional and measure attributes are unequal.

Impact of UsedView. In this experiment, we compare four algorithms: VizPut-
Cell,VizPut-Cell(f),VizPut-Cell(v), andVizPut-Cell(f, v). As discussed in Sec. 3.1,
there are three prevalent cases of target and reference subset settings in the top-
k visual insight recommendation task. The first case is DQ ⊂ DR, the second
case is DQ ∪DR = D, and the third case is DQ ∪DR ̸= D. Figure 9 illustrates
the influence of V on these three cases. In the second case (Figure 9b), the
performance of both VizPut-Cell and VizPut-Cell(f) remains unaltered when
utilizing V , since DQ ∪ DR = D and the disease attribute has only two cate-
gories ([Y es,No]), resulting in merely two possible subsets based on the disease
predicate. Consequently, the V score for all missing cells on DI (i.e., DQ ∪DR)
is equal to 1. In contrast, in both the first and third cases, incorporating V
into the priority function enhances performance, as evidenced by VizPut-Cell(v)
outperforming VizPut-Cell, and VizPut-Cell(f, v) surpassing VizPut-Cell(f).

Evaluating the Effectiveness of VizPut-Ranking and Hybrid Approaches.
Figure 10a presents the effectiveness of our proposed method, VizPut-Ranking,
in comparison to VizPut-Cell(f) and the baselines (i.e., No Imputation, Random
Selection Imputation, and Fairness Imputation), employing the RBOmetric. The
figure indicates that VizPut-Ranking surpasses the baselines; nevertheless, it is
inferior to VizPut-Cell(f) when the percentage of missing values is low, and both
exhibit similar performance when the percentage of missing values is around 30%.
Figure 10b displays the effectiveness of VizPut-Ranking(w), revealing that this
extended version outperforms the original VizPut-Ranking. This suggests that
integrating a weight parameter can enhance the effectiveness of recommended
visualizations. Figure 10b also displays the performance of the hybrid approach,
which combines VizPut-Ranking(w) and VizPut-Cell(f). Our hybrid approach
outperforms the standalone algorithms, demonstrating that combining VizPut-
Ranking(w) and VizPut-Cell(f) optimizes the handling of incomplete data for
visualization recommendation.
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(a) VizPut-Ranking vs. VizPut-Cell(f) (b) Hybrid vs standalone algorithms

Fig. 10: The effectiveness of VizPut-Ranking, VizPut-Ranking(w), VizPut-Cell(f)
and Hybrid approaches on heart disease dataset, where Hybrid is the combina-
tion of VizPut-Ranking(w) and VizPut-Cell(f)).

Effectiveness Comparison of Methods to Minimize Insight Processing
Computation in VizPut-Ranking(w) and Hybrid. Figure 11 shows the
effectiveness comparison of different optimization techniques for minimizing in-
sight processing in both VizPut-Ranking(w) and Hybrid. Both figures indicate
that the no-opt approach, which requires the regeneration of all visualizations
in the second generation (i.e., after imputation), has the highest effectiveness
compared to the other proposed methods. However, this method is costly (see
Figure 12) due to its double insight processing expense. Therefore, we introduce
optimization techniques that offer effectiveness close to no-opt but at a more rea-
sonable cost. Additionally, our proposed method—regenerating the top-k from
temp-topk and the visualizations with the highest imputation (i.e., top-k + k-
highest imputed)—exhibits superior effectiveness compared to other methods,
with the exception of no-opt. When comparing the costs of top-k + k-highest
imputed and no-opt in Figure 12, it is evident that top-k + k-highest imputed is
significantly more affordable than no-opt. This cost difference is further elabo-
rated upon in the subsequent section.

Cost Comparison of Methods to Minimize Insight Processing Com-
putation in VizPut-Ranking(w) and Hybrid. As illustrated in Figure 12,
no-opt requires twice the computation for insight generation processing. In this
work, we rely on the top-k + k-highest imputed method, which can significantly
reduce the Ci value in comparison to the no-opt. Note that we can also utilize the
top-k method, which only regenerates the top k visualizations from temp-rank,
or the k-highest imputed method, which only regenerates the top k visualiza-
tions that received the highest imputation. While both of these approaches are
more efficient than top-k + k-highest imputed, they exhibit lower effectiveness.
For instance, consider the Heart Disease dataset. For each single query input,
it generates 2 × 8 × 6 × 4 = 384 visualizations. The baseline solution (no-opt)
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(a) The effectiveness of VizPut-
Ranking(w) with different optimiza-
tion techniques for generating the final
recommendation

(b) The effectiveness of Hybrid with
different optimization techniques for
generating the final recommendation

Fig. 11: The effectiveness comparison of different optimization techniques for
generating the final recommendation

would re-execute all 384 visualizations. On the other hand, the top-k method
only selects k = 10 visualizations to regenerate, similar to the k-highest imputed
method, which also regenerates k = 10 visualizations. It is also noted that some
visualizations from top-k + k-highest imputed often intersect; thus, the combi-
nation of top-k + k-highest imputed might regenerate at most 20 visualizations,
but usually, it is less than that. Considering the context of the Airbnb dataset,
which has fewer attributes compared to the Heart Disease dataset, however, it
has a higher number of tuples, it serves well for efficiency checking. Similar to
the Heart Disease dataset, a single query input in the Airbnb dataset generates
2 × 4 × 4 × 4 = 128 visualizations. Using the no-opt method would lead to the
regeneration of all 128 visualizations. However, employing the top-k or k-highest
imputed methods would mean only 10 visualizations are regenerated in each
case. Combining top-k + k-highest imputed could regenerate a maximum of 20
visualizations, though it often results in a number less than that.

Cost Comparison of VizPut-Cell(f), VizPut-Ranking(w), and Hybrid.
As depicted in Figure 10b, both VizPut-Ranking(w) and Hybrid offer advantages
in terms of effectiveness, with the Hybrid method exhibiting superior effective-
ness compared to the other methods. However, considering efficiency, VizPut-
Cell(f) clearly has the lowest cost compared to the other proposed methods,
as demonstrated in Figures 13b and 13a. The efficiency of VizPut-Cell(f) can
be attributed to its mechanism of generating recommendations only once, in
contrast to VizPut-Ranking(w) and Hybrid, which generate recommendations
twice—initially producing a temporary rank prior to data imputation, and then
creating final recommendations. Although VizPut-Ranking(w) and Hybrid gen-
erate recommendations twice, our proposed optimization techniques reduce the
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Fig. 12: Comparison of total cost between VizPut-Ranking(w) and the Hybrid
method under different settings for the second insight generation from Airbnb
dataset.
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Fig. 13: Total cost comparison of VizPut-Cell(f), VizPut-Ranking(w), and Hy-
brid with different datasets

cost associated with the second generation of insights. This cost reduction is
achieved by regenerating only k views, determined by the user-provided k pa-
rameter and the k views with the highest imputation budgets. Furthermore,
among all the approaches, the Hybrid method incurs the highest cost for miss-
ing cell selection Cp (a component of the data cleaning cost Cc). This increased
cost arises because the Hybrid approach integrates multiple priority functions,
each with its unique method to prioritize the imputation of missing cells.

5 Conclusions

This paper presents three methods for dealing with incomplete data in visual-
ization recommendations. Users can choose a method depending on their needs
and preferences. The Cell-aware VizPut variants are suitable for users who prefer
to impute data first and then generate recommendations (”impute-first-insight-
next” approach). On the other hand, the Ranking-aware VizPut variants follow
the opposite process, generating insights first, obtaining the temporary top-k
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temp-rank, and imputing based on it. The hybrid approach combines both Cell-
aware VizPut and Ranking-aware VizPut to achieve maximum performance in
handling incomplete data in visualization recommendations.
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