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ABSTRACT
To support effective data exploration, there has been a grow-
ing interest in developing solutions that can automatically
recommend data visualizations that reveal important data-
driven insights. In such solutions, a large number of possible
data visualization views are generated and ranked according
to some metric of importance, then the top-k most impor-
tant views are recommended. However, one drawback of
that approach is that it often recommends similar views,
leaving the data analyst with a limited amount of gained
insights. To address that limitation, in this work we posit
that employing diversification techniques in the process of
view recommendation allows eliminating that redundancy
and provides a concise coverage of the possible insights to
be discovered. To that end, we propose a hybrid objective
utility function, which captures both the importance, as well
as the diversity of the insights revealed by the recommended
views. While in principle, traditional diversification methods
provide plausible solutions under our proposed utility func-
tion, they suffer from a significantly high query processing
cost. In particular, directly applying such methods leads to a
“process-first-diversify-next” approach, in which all possible
data visualization are generated first via executing a large
number of aggregate queries. To address that challenge, we
propose the DiVE scheme, which efficiently selects the top-
k recommended view based on our hybrid utility function.
DiVE leverages the properties of both the importance and
diversity metrics to prune a large number of query executions
without compromising the quality of recommendations. Our
experimental evaluation on real datasets shows the perfor-
mance gains provided by DiVE.
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1 INTRODUCTION
The need for effective visual data exploration is gaining
wider recognition, where automated solutions are provided
to support users from professional data analysts in industry
and science to data enthusiasts who lack formal training in
data analytics. The goal is to enable data-driven discoveries,
wherein interesting insights are unearthed from large volumes
of collected data. As such, recent years have seen the intro-
duction of many visual analytic tools (e.g., Tableau, Qlik,
and Spotfire). These tools aim to provide aesthetically high-
quality visualizations in terms of charts, which are essentially
aggregated views of the underlying data (e.g., bar charts). For
instance, the commercial Tableau visualization tool presents
users with aggregate charts, with the expectation that some
of those charts would reveal insights that a user finds interest-
ing. Clearly, however, manually looking for insights in each
visualization is labor-intensive and time-consuming.

Such challenge motivated multiple research efforts that
focused on automatic recommendation of visualizations based
on some metrics that capture the utility of a recommended
visualizations (e.g., [4, 10, 13, 16–18, 21–23]). For instance,
recent case studies have shown that a deviation-based formula-
tion of that utility is able to provide analysts with interesting
visualizations that highlight some of the particular trends of
the analyzed datasets [4, 5, 21, 22]. Differently from Tableau’s
user-driven approach, in that deviation-based data-driven
approach, certain views of a query result (i.e., target view)
are recommended if they deviate significantly from those
exhibited by a reference dataset (i.e., reference view). The
intuition is that a view with high deviation is expected to
reveal some important insights that are very particular to
the data subset under analysis.

For instance, consider a data analyst trying to gain some
insights into the Cleveland heart disease dataset1. Naturally,
a first step in that exploratory analysis is to conduct some
comparison between patients with heart disease and those
1http://archive.ics.uci.edu/ml/datasets/heart+Disease
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Figure 1: AVG(oldpeak) vs. chest pain types
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Figure 2: MAX(oldpeak) vs. chest pain types

without heart disease. Hence, the analyst writes an SQL query
that selects patients with heart disease (i.e., disease) as the
target data subset for analysis, and the remaining patients
are selected as the reference data subset (i.e., no-disease).

Since the analyzed data contains different dimensions (e.g.,
chest pain types, sex, etc.) and different measures (oldpeak,
age, etc.), it is a challenging task for the analyst to manually
select the combinations of dimensions and measures that re-
veal interesting insights. Hence, to automatically recommend
interesting bar chart visualizations, different SQL aggregate
functions are applied on the views generated from all possible
pairwise combinations of dimensions and measures, then the
most important views are presented to the analyst. For this
example, Figure 1 shows the top-1 recommended view accord-
ing to the deviation-based metric [21, 22]. The figure shows
that an aggregate view (i.e., bar chart) based on average
oldpeak (i.e., pressure of the ST segment, where ST segment
is an isoelectric section of the ECG) vs. chest pain types
exhibits a large deviation between the target view (disease)
and reference view (no-disease). That is, patients with heart
disease often suffer more from asymptomatic and non-angina
chest pains, in comparison to those without heart disease.

While recommending views based on their importance has
been shown to reveal some interesting insights [4, 21, 22],
such approach still suffers from a “tunnel vision”, where it
often recommends similar and redundant views. For instance,
Figure 2 shows the second top recommended view for the
analysis described above. Comparing Figures 2 and 1, it is

easy to see that both views are based on the same dimension
(i.e., chest pain types) and the same measure (i.e., oldpeak),
and the only difference between them is the aggregate func-
tion (i.e., MAX vs AVG). Despite that similarity between the
two views, they are still both recommended to the analyst
due to the high deviation between target and reference views.

To address that limitation, in this work we posit that
employing diversification techniques in the process of view
recommendation allows eliminating that redundancy and
provides full coverage of the possible insights to be discovered.
In fact, diversity is rapidly becoming one of the fundamental
features for maximizing information gain in web search and
recommendation engines (e.g., [2, 15, 26, 27]). Similarly, it is
highly desirable to recommend views that reveal interesting
insights, while at the same time provide the analyst with a
broad scope of those insights.

To that end, we propose a hybrid objective utility function,
which captures both the importance (i.e., a deviation-based
metric), as well as the diversity of insights revealed by the rec-
ommended views. The main goal is to select and recommend
top-k views that balance the tradeoff between importance
and diversity based on the hybrid objective function.

In principle, traditional data diversification methods that
consider both relevance and diversity can be directly applied
in the context of our problem to maximize the overall ob-
jective function (e.g., [15, 26, 27]). However, differently from
assessing relevance, evaluating the importance of a view is
a computationally expensive operation, which requires the
execution of rather data-intensive queries. As such, directly
applying those methods leads to a “process-first-diversify-
next” approach [14], in which all possible data visualizations
are generated first via executing a large number of aggregate
queries. To address that challenge and minimize the incurred
query processing cost, we propose an integrated scheme called
DiVE, which leverages the properties of both the importance
and diversity to prune a large number of low-utility views
without compromising the quality of recommendations. The
main contributions of this paper are summarized as follows:

∙ We formulate the problem of recommending views that
are both important and diverse based on a hybrid ob-
jective function, which balances the tradeoff between
the content and the context of recommended view (Sec-
tion 3).
∙ We propose the novel DiVE schemes, which employ

several algorithms to select the recommended visualiza-
tions based on our hybrid ranking/objective function
(Section 4).
∙ We propose novel optimization techniques that lever-

age the salient characteristics of our objective function
to minimize the query processing cost incurred in view
recommendation while maximizing the quality of rec-
ommendation (Section 5).
∙ We conduct an extensive experimental evaluation on

real datasets, which compare the performance of vari-
ous algorithms and illustrate the benefits achieved by
DiVE (Sections 6).
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2 PRELIMINARIES AND RELATED WORK
Several recent research efforts have been directed to the chal-
lenging task of recommending aggregate views that reveal
interesting data-driven insights (e.g., [4, 21, 22]). As in previ-
ous works, we assume a similar model, in which a visual data
exploration session starts with an analyst submitting a query
𝑄 on a multi-dimensional database 𝐷𝐵 . Essentially, 𝑄 selects
a subset 𝐷𝑄 from 𝐷𝐵 by specifying a query predicate 𝑇 .
Hence, 𝑄 is defined as: 𝑄: SELECT * FROM 𝐷𝐵 WHERE 𝑇 ;

Ideally, the analyst would like to generate some aggregate
views (e.g., bar charts or scatter plots) that unearth some
valuable insights from the selected data subset 𝐷𝑄. However,
achieving that goal is only possible if the analyst knows
exactly what to look for! That is, if she knows the parameters,
which specify some aggregate views that lead to those valuable
insights (e.g., aggregate functions, grouping attributes, etc.).
Hence, the goal of existing works, such as [4, 13, 21–23], is
to automatically recommend such aggregate views.

To specify and recommend such views, as in previous works,
we consider a multi-dimensional database 𝐷𝐵 , which consists
of a set of dimensional attributes A and a set of measure at-
tributes M. Also, let F be a set of possible aggregate functions
over measure attributes. Hence, specifying different combina-
tions of dimension and measure attributes along with various
aggregate functions, generates a set of possible views V over
the selected dataset 𝐷𝑄. For instance, a possible aggregate
view 𝑉𝑖 is specified by a tuple <𝐴𝑖, 𝑀𝑖, 𝐹𝑖>, where 𝐴𝑖 ∈ A,
𝑀𝑖 ∈ M, and 𝐹𝑖 ∈ F, and it can be formally defined as: 𝑉𝑖:
SELECT 𝐴𝑖, 𝐹𝑖 (𝑀𝑖) FROM 𝐷𝐵 WHERE 𝑇 GROUP BY 𝐴𝑖;

Manually looking for insights in each view 𝑉𝑖 ∈ V is a
labor-intensive and time-consuming process. Particularly, the
number of views to explore is equal to: |V| = |A| × |M| × |F|,
where |F| is the number of SQL aggregate functions, |A| and
|M| are the number of attributes and measures. Such challenge
motivated multiple research efforts that focused on automatic
recommendation of views based on some metrics that capture
the utility of a recommended view [4, 10, 13, 16–18, 21–23].

Those approaches can be broadly classified as user-driven
or data-driven. User-driven solutions focus on recommending
views that facilitate a particular user intent or task. For
example, VizDeck [13] utilizes user feedback as a basis for
view recommendation, whereas Profiler [10] detects anomalies
and recommends views based on mutual information metric.
Similarly, Rank-by-Feature Framework [18] enables users to
select their criterion for ranking histograms and scatter-plots.

Meanwhile, data-driven focus on enabling the discovery
of interesting insights from large volumes of data without
requiring much prior knowledge of the data. Towards that
end, data-driven metrics are employed to capture the inter-
estingness or importance of a recommended view. Recent case
studies have shown that a deviation-based metric is effective in
providing analysts with important views that highlight some
of the particular trends of the analyzed datasets [4, 5, 21, 22].

In particular, the deviation-based metric measures the dis-
tance between target view 𝑉𝑖 (𝐷𝑄) and reference view 𝑉𝑖 (𝐷𝑅).
That is, it measures the deviation between the aggregate view
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Figure 3: Content vs. Context of views.

𝑉𝑖 generated from the subset data 𝐷𝑄 vs. that generated
from a reference dataset 𝐷𝑅, where 𝑉𝑖 (𝐷𝑄) is denoted as
target view, whereas 𝑉𝑖 (𝐷𝑅) is denoted as reference view.
That reference dataset could be the whole database (i.e.,
𝐷𝑅 = 𝐷𝐵) or a selected subset of the database (e.g., 𝐷𝑅 =

no-disease, as described in Sec. 1). The premise underlying
the deviation-based metric is that a view 𝑉𝑖 that results in a
high deviation is expected to reveal some important insights
that are very particular to the subset 𝐷𝑄 and distinguish
it from the patterns in 𝐷𝑅. In case, 𝐷𝑅 = 𝐷𝐵 , then the
patterns extracted from 𝐷𝑄 are fundamentally different from
the generals ones manifested in the entire database 𝐷𝐵 .

While recommending views based on their importance has
been shown to reveal some interesting insight, it also suffers
from the drawback of recommending similar and redundant
views, which leaves the data analyst with a limited scope of
possible insights. As illustrated in Sec. 1, Figures 1 and 2
show two recommended views that basically reveal the same
insight. To address that limitation, in this work we posit that
employing diversification techniques [2, 3, 8, 14, 15, 24, 27]
in the process of view recommendation allows eliminating
that redundancy and provides a good and concise coverage
of the possible insights to be discovered. In the next section,
we discuss in details the formulation of both importance
and diversity, and their impact on the view recommendation
process.

3 DIVERSIFYING RECOMMENDED VIEWS
Towards formulating our hybrid objective for view recommen-
dation, in this section we describe the content-based deviation
metric for assessing the importance of each view (Sec. 3.1),
together with our context-based measure of the (dis)similarity
between different views (Sec. 3.2). Those two metrics provide
the foundations for our hybrid objective that aims to bal-
ance the tradeoff between importance and diversity in view
recommendation (Sec. 3.3).

3.1 Content-Driven Importance
As described in the previous section, we adopt a deviation-
based metric to quantify the importance of a view [21, 22].
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Essentially, the deviation-based metric compares an aggregate
view generated from the selected subset dataset 𝐷𝑄 (i.e.,
target view 𝑉𝑖 (𝐷𝑄)) to the same view if generated from a
reference dataset 𝐷𝑅 (i.e., reference view 𝑉𝑖 (𝐷𝑅)).

Clearly, the deviation between a target and a reference view
is a data-driven metric. That is, it measures the deviation
between the result of 𝑉𝑖 (𝐷𝑄) and that of 𝑉𝑖 (𝐷𝑅). Conse-
quently, from a visualization point of view, that deviation is
a content-based metric that captures the difference between
the content of the visualization generated by 𝑉𝑖 (𝐷𝑄) vs. the
visual content of 𝑉𝑖 (𝐷𝑅). In the next, we formally describe
the standard computation of that data-driven content-based
metric, whereas the discussion of its counterpart context-
driven metric is deferred to the next section.

To calculate the content-based deviation, each target view
𝑉𝑖 (𝐷𝑄) is normalized into a probability distribution 𝑃 [𝑉𝑖 (𝐷𝑄)]
and similarly, each reference view into 𝑃 [𝑉𝑖 (𝐷𝑅)]. In par-
ticular, consider an aggregate view 𝑉𝑖 =<𝐴𝑖, 𝑀𝑖, 𝐹𝑖 >. The
result of that view can be represented as the set of tuples:
< (𝑎1, 𝑔1), (𝑎𝑗 , 𝑔𝑗 ), ..., (𝑎𝑡, 𝑔𝑡)>, where 𝑡 is the number of dis-
tinct values (i.e., groups) in attribute 𝐴𝑖, 𝑎𝑗 is the 𝑗-th group
in attribute 𝐴𝑖, and 𝑔𝑗 is the aggregated value 𝐹𝑖 (𝑀𝑖) for
the group 𝑎𝑗 [4, 22]. Hence, 𝑉𝑖 is normalized by the sum

of aggregate values 𝐺 =
𝑡∑︀

𝑗=1
𝑔𝑗 , resulting in the probability

distribution 𝑃 [𝑉𝑖] =< 𝑔1
𝐺 , 𝑔2

𝐺 , ..., 𝑔𝑡
𝐺 >.

Finally, the importance score of 𝑉𝑖 is measured in terms
of the distance between 𝑃 [𝑉𝑖 (𝐷𝑄)] and 𝑃 [𝑉𝑖 (𝐷𝑅)] (as illus-
trated in Figure 3), and is simply defined as:

𝐼 (𝑉𝑖) = 𝑑𝑖𝑠𝑡
(︀
𝑃

[︀
𝑉𝑖 (𝐷𝑄)

]︀
, 𝑃 [𝑉𝑖 (𝐷𝑅)]

)︀
(1)

where 𝐼 (𝑉𝑖) is the importance score of 𝑉𝑖 and dist is a dis-
tance function. Similar to existing work [21, 22], we adopt
a Euclidian distance, but other distance measures are also
applicable (Earth Mover’s distance, K-L divergence, etc.).

In current approaches for view recommendation, the im-
portance value 𝐼 (𝑉𝑖) of each possible view 𝑉𝑖 is computed,
and the 𝑘 views with the highest deviation are recommended.
However, in this work, our goal is to ensure that recom-
mended views provide a good coverage of possible insights,
which is described next.

3.2 Context-Driven Similarity
As mentioned above, recommending views based only on their
data content often leads to a set of similar views. In order
to provide full coverage of all possible interesting insights, in
this work, we posit that achieving diversity within the set of
recommended views is an essential quality measure. Before
discussing the details of diversity computation in Sec. 3.3, it is
important to notice that central to that computation is some
notion of distance measure between data objects. Existing
work provides multiple metrics for measuring that distance
between traditional data objects, such as web documents
(e.g., [2, 15, 27]), database tuples (e.g, [20]), etc. However,
our work in this paper is the first to consider diversity in the
context of aggregate data visualizations. As such, a metric

is needed to quantify the (dis)similarity between the dis-
tinct features of different visualizations. Towards this, we
re-emphasize that each visualization is merely a data view
generated by an aggregate query. Thus, such metric natu-
rally lends itself to considering the query underlying each
view (i.e., the query executed to create the view). In turn,
the distance between two views is measured based on the
distance between their underlying queries. Hence, in addition
to our data-driven content-based deviation, we also intro-
duce a query-driven context-based deviation metric. Figure 3
illustrates and summarizes our proposed metrics.

Towards measuring the context-based deviation, we extend
on existing work in the area of query recommendation and
refinement (e.g., [1, 11, 12, 20]). In that work, the distance
between two range queries 𝑞1 and 𝑞2 is mapped to that of
measuring the edit distance needed to transform 𝑞1 into 𝑞2.
In the context of our work, however, views are generated from
aggregate queries without range predicates. In particular, a
view is fully defined in terms of a combination of attribute,
measure and an aggregate function. Hence, in addition to
the content of a view 𝑉𝑖 which is described by its probabil-
ity distribution (i.e., 𝑃 (𝑉𝑖)) as defined in Sec. 3.1), we also
consider the context of the view 𝐸 (𝑉𝑖), which is defined in
terms of the query underlying 𝑉𝑖 as: 𝐸 (𝑉𝑖) = {𝐴𝑖, 𝑀𝑖, 𝐹𝑖}.

Such definition of view context leads to a special case of
the existing work on query recommendation [11, 12, 20], in
which the normalized distance between two queries is simply
measured using the Jaccard similarity measure. Hence, the
Jaccard similarity between two aggregate views 𝑉𝑖 and 𝑉𝑗 is

measured as: 𝐽
(︀
𝑉𝑖, 𝑉𝑗

)︀
=
|𝐸 (𝑉𝑖) ∩ 𝐸 (𝑉𝑗 )|
|𝐸 (𝑉𝑖) ∪ 𝐸 (𝑉𝑗 )|

We note that the jaccard similarity assigns equal weights
to each of the element in a set. Accordingly, when applied to
aggregate views, then two views with the same attribute and
different measure and aggregate function will have the same
similarity score as any other pair of views with same measure
but different attribute and aggregate function. However, an
analyst may consider two views with the same attribute 𝐴𝑖

more similar than two views with same measure attribute
𝑀𝑖. To allow the analyst to specify such preference, each
contextual component of a view is associated with a weight
that specifies its impact on determining the (dis)similarity
between views. Specifically, for any view 𝑉𝑖, let 𝑤(𝑒) be
the weight assigned to the 𝑒𝑡ℎ context component of 𝐸 (𝑉𝑖).
Since, 𝐸 (𝑉𝑖) is a set of three components {𝐴𝑖, 𝑀𝑖, 𝐹𝑖}, then∑︀3

𝑒=1 𝑤(𝑒) = 1. Accordingly, the similarity between any two
views 𝑉𝑖 and 𝑉𝑗 is measured as:

𝐽 (𝑉𝑖, 𝑉𝑗 ) =

∑︀
𝑒∈𝐸 (𝑉𝑖 )∩𝐸 (𝑉𝑗 )

𝑤(𝑒)∑︀
𝑒∈𝐸 (𝑉𝑖 )∪𝐸 (𝑉𝑗 )

𝑤(𝑒)

Consequently, the context-based deviation between 𝑉𝑖 and
𝑉𝑗 is calculated as:

𝐷
(︀
𝑉𝑖, 𝑉𝑗

)︀
= 1− 𝐽

(︀
𝑉𝑖, 𝑉𝑗

)︀
(2)
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3.3 Problem Definition
In this section, we formally define our problem for recom-
mending diversified interesting aggregate views. Towards this,
we first define the metrics to measure the performance of our
proposed visualization recommendation system.

3.3.1 Hybrid Objective Function. Given set of all possible
views V, our goal is to recommend set 𝑆 ⊆ V, where |𝑆| = 𝑘.
Our hybrid objective function is designed to consider both the
importance and diversity of the recommended views. Partic-
ularly, it integrates two components: 1) the total importance
score of set 𝑆, and 2) the diversity score of 𝑆.

The importance score of 𝑆 is calculated as the average
value of the importance measure of each view in 𝑆, as given
in Eq. 1. Hence, the total importance score of 𝑆 is defined as:

𝐼 (𝑆) =
∑︀𝑘

𝑖=1
𝐼 (𝑉𝑖)

𝐼𝑢
, 𝑉𝑖 ∈ 𝑆,

where 𝐼𝑢 is the upper bound on the importance score for
an individual view, which is achieved when for each group
𝑎𝑖, the corresponding value 𝑔𝑖

𝐺 in 𝑃 [𝑉𝑖 (𝐷𝑅)] or 𝑃 [𝑉𝑖 (𝐷𝑄)] is
zero. Thus, 𝐼𝑢 =

√
2, and is used to normalize the average

importance score for set 𝑆.
In order to measure the diversity of a set of objects, sev-

eral diversity functions have been employed in the literature
[2, 24]. Among those, previous research has mostly focused
on measuring diversity based on either the average or the
minimum of the pairwise distances between the elements of a
set [25]. In this work, we focus on the first of those variants
(i.e., average), as it maximizes the coverage of 𝑆. Hence, given
a distance metric 𝐷

(︀
𝑉𝑖, 𝑉𝑗

)︀
, as given in Eq. 2, the diversity

of a set 𝑆 can be simply measured as follows:

𝑓 (𝑆, 𝐷) =
1

𝑘 (𝑘 − 1)
∑︀𝑘

𝑖=1
∑︀𝑘

𝑗>𝑖 𝐷
(︀
𝑉𝑖, 𝑉𝑗

)︀
, 𝑉𝑖, 𝑉𝑗 ∈ 𝑆

Since the maximum context-based deviation between any two
views in Eq. 2 is 1.0, then dividing the sum of distances by
𝑘 (𝑘 − 1) ensures that the diversity score of set 𝑆 is normalized
and bounded by 1.0.

Putting it together, for a set of views 𝑆 ⊆ 𝑉 , our hybrid
objective function is formulated as the linear weighted com-
bination of the importance score, 𝐼 (𝑆) and diversity score
𝑓 (𝑆, 𝐷), and is defined as:

𝐹 (𝑆) = (1− 𝜆) × 𝐼 (𝑆) + 𝜆× 𝑓 (𝑆, 𝐷) (3)

where 0 ≤ 𝜆 ≤ 1 is employed to control the preference given
to the importance and diversity components. For instance,
a higher value of 𝜆 results in a set of more diverse views,
whereas a lower value of 𝜆 generates a set of important views,
which might exhibit some redundancy.

Hence, our goal is to find an optimal set of views 𝑆*,
which maximizes the objective function 𝐹 (𝑆), and is formally
defined as follows:

Definition 1. Recommending diversified important views:
Given a target subset 𝐷𝑄 and a reference subset 𝐷𝑅, the goal
is to recommend a set 𝑆 ⊆ V, where |𝑆| = 𝑘, and V is the
set of all possible target views, such that the overall hybrid
objective 𝐹 (𝑆) is maximized.

3.3.2 Cost of Visualization Recommendation. Exisiting re-
search has shown that recommending aggregate data visual-
izations based on data-driven content-based deviation is a
computationally expensive task [4, 21, 22]. Moreover, inte-
grating diversification into the view recommendation problem,
as described above, further increases that computational cost.
In particular, the incurred processing cost includes the follow-
ing two components: 1) Query processing cost 𝐶𝑄: measured
in terms of the time needed to execute and compare all the
queries underlying the set of target views as well as their
corresponding reference views (i.e., content-based deviation),
and 2) View diversification cost 𝐶𝐷: measured in terms of
the time needed to compute all the pairwise distances be-
tween each pair of target views (i.e., context-based deviation).
Consequently, the total cost 𝐶𝑇 for recommending a set of
views is simply defined as: 𝐶𝑇 = 𝐶𝑄 + 𝐶𝐷.

In principle, traditional data diversification methods that
consider both relevance and diversity can be directly applied
in the context of our problem to maximize the objective
function Eq. 3. For instance, in the context of recommending
web search, such methods are designed to recommend a set
of diversified objects (e.g., web documents) that are relevant
to the user needs (e.g., [2, 15, 27]), database tuples (e.g.,
[20]), etc. However, in that setting, the relevance of an object
is either given or simply computed. To the contrary, in our
setting for view recommendation, the importance of a view
is a computational expensive operation, which requires the
execution of a target and reference view. As such, directly
applying those methods leads to a “process-first-diversify-
next” approach [14], in which all possible data visualization
are generated first via executing a large number of aggregate
queries. To address that challenge and minimize the incurred
query processing cost, next we propose our DiVE scheme,
which leverages the properties of both the importance and
diversity to prune a large number of low-utility views, without
compromising the quality of recommendations.

4 THE DiVE SCHEMES
In this section, we first discuss two simple baseline solutions
for view recommendation (Sec. 4.1). Then, we present our
DiVE schemes for recommending diversified top views, as
captured by Eq. 3. Towards this, we first expand on the
well-known Greedy heuristic and propose our DiVE-Greedy
scheme (Sec. 4.2), whereas our Swap-based DiVE scheme is
introduced in Sec. 4.3.

4.1 Baseline Solutions
As baseline solutions to compare the performance of our pro-
posed DiVE schemes, we simply incorporate methods from
existing work that optimize either for importance or diversity.
In terms of diversity, we employ the classical Greedy Con-
struction algorithm [19], which has been shown to maximize
diversity within reasonable bounds compared to the optimal
solution [24, 26]. In this work, we refer to that baseline as
Greedy-Diversity. Similarly, in terms of importance, we adopt
the work on SeeDB for recommending the top-k views with
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Algorithm 1: DiVE-Greedy
Input: Set of views V and result set size k
Output: Result set 𝑆 ⊆ V, |S| = k

1 𝑆 ←
[︀
𝑉𝑖, 𝑉𝑗

]︀
get two most distant views

2 𝑋 ← [V∖𝑆]
3 𝑖← 𝑙𝑒𝑛 (𝑆)

4 while |S| < k do
5 𝑋𝑖 ← 𝑎𝑟𝑔𝑚𝑎𝑥((1− 𝜆)× 𝐼 (𝑋𝑖) +𝜆× 𝑠𝑒𝑡𝐷𝑖𝑠𝑡 (𝑋𝑖, 𝑆))

6 𝑆.𝑎𝑑𝑑 (𝑋𝑖)

7 𝑋.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑋𝑖)

8 end
9 return S

the highest deviation [21, 22]. Particularly, in that method,
all possible target and reference views are generated by ex-
ecuting their underlying queries, then the list of views is
linearly scanned to recommend the top-k for which the target
view shows high deviation from its corresponding reference
view (denoted as Linear-Importance in this work).

Clearly, those two methods are “oblivious” to our hybrid ob-
jective function (i.e., Eq.3). Moreover, as expected and shown
in our experimental evaluation (Sec. 6), Greedy-Diversity
provides its best performance in terms of effectiveness when
𝜆 = 1.0 (i.e., all preference is given to diversity), whereas
Linear-Importance is the winner when 𝜆 = 0.0 (i.e., all pref-
erence is given to importance). Next, we present our DiVE
schemes which are able to provide the best performance,
irrespective of the value of 𝜆.

4.2 The DiVE-Greedy Scheme
In this section, we discuss our first DiVE scheme (DiVE-
Greedy), which simply extends the basic Greedy Construction
algorithm to work under our hybrid objective function (i.e.,
Eq. 3). Such extension is straightforward and is described in
Algorithm 1. Similar to the classical Greedy Construction,
DiVE-Greedy initializes the set 𝑆 with the two most distant
views, where the distance between any two views is calculated
using our context-based function, as given in Eq.2. Then,
DiVE-Greedy iteratively selects new views to be added to
𝑆. Particularly, in each iteration a view is selected from the
set of remaining views 𝑋 and is added to 𝑆. To make that
selection, DiVE-Greedy assigns a score to each view in 𝑋,
which is based on the hybrid objective function 𝐹 (𝑆), as
defined in Eq. 3. Specifically, the utility score assigned to a
view 𝑋𝑖 ∈ 𝑋 is computed as:

𝑈 (𝑋𝑖) = (1− 𝜆) × 𝐼 (𝑋𝑖) + 𝜆× 𝑠𝑒𝑡𝐷𝑖𝑠𝑡 (𝑋𝑖, 𝑆) (4)

where 𝑠𝑒𝑡𝐷𝑖𝑠𝑡 (𝑋𝑖, 𝑆) =
1
|𝑆|

∑︀|𝑆|
𝑗=1

𝑉𝑗 ∈𝑆

𝐷
(︀
𝑉𝑖, 𝑉𝑗

)︀
Thus, in each

iteration, the view with highest utility score is selected and
added to 𝑆, until |𝑆| = 𝑘, as shown in Algorithm 1.
DiVE-Greedy Cost: Notice that the only difference between
DiVE-Greedy and our baseline Greedy-Diversity (i.e., the
classical Greedy algorithm) is in the utility score assigned to
each view (i.e., 𝑈 (𝑋𝑖) in Eq.4). In fact, in the special case
where 𝜆 = 1.0, Eq. 4 boils down to 𝑈 (𝑋𝑖) = 𝑠𝑒𝑡𝐷𝑖𝑠𝑡 (𝑋𝑖, 𝑆),

Algorithm 2: DiVE-Swap
Input: Set of views V and result set size k
Output: Result set 𝑆 ⊆ V, |S| = k

1 𝑆 ← set of maximum importance or maximum diversity
2 𝑋 ← [V∖𝑆]
3 𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 0
4 𝑖𝑚𝑝𝑟𝑜𝑣𝑒← 𝑇 𝑟𝑢𝑒

5 while improve = True do
6 for 𝑋𝑖 in set 𝑋 do
7 𝑆′ ← 𝑆

8 for 𝑆𝑗 in set 𝑆 do
9 if 𝐹

(︀
𝑆′)︀ < 𝐹

(︀
𝑆∖𝑆𝑗 ∪𝑋𝑖

)︀
then

10 𝑆′ ← 𝑆∖𝑆𝑗 ∪𝑋𝑖

11 end
12 end
13 if 𝐹

(︀
𝑆′)︀ > 𝐹 (𝑆) then

14 𝑆 ← 𝑆′

15 end
16 end
17 if 𝐹 (𝑆) > 𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then
18 𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐹 (𝑆)

19 𝑖𝑚𝑝𝑟𝑜𝑣𝑒← 𝑇 𝑟𝑢𝑒

20 else
21 𝑖𝑚𝑝𝑟𝑜𝑣𝑒← 𝐹 𝑎𝑙𝑠𝑒

22 end
23 end
24 return S

which is the same score used by Greedy-Diversity for max-
imizing diversification. However, that simple change in the
utility score leads to executing the query underlying each
view 𝑋𝑖 in order to compute the (1− 𝜆) × 𝐼 (𝑋𝑖) compo-
nent of its score. Hence, the overall cost of DiVE-Greedy is
𝐶𝑇 = 𝐶𝑄 + 𝐶𝐷, as opposed to the cost of Greedy-Diversity,
which is only 𝐶𝑇 = 𝐶𝐷, where 𝐶𝑄 is the query processing
cost (i.e., data-driven), and 𝐶𝐷 is the cost for computing
Jaccard distances (i.e., query-driven), as described in Sec. 3.
Clearly, 𝐶𝑄 is equal to the number of possible views and is
𝑂(𝑛), where 𝑛 is the number of possible views, whereas 𝐶𝐷
is 𝑂(𝑘𝑛), where 𝑘 is the number of recommended views.

4.3 The DiVE-Swap Scheme
The DiVE-Greedy algorithm presented in the previous section
is of the constructive type. That is, it starts with an empty
set of views and incrementally constructs it by adding one
view at a time. To the contrary, our DiVE-Swap presented in
this section falls under the local search type of algorithms. In
general, a local search algorithm starts out with a complete
initial solution and then attempts to find a better solution
in the neighborhood of that initial one. Like constructive
algorithms, local search algorithms are also widely used in
solving optimization problems including diversification. For
instance, the Swap local search method has been utilized to
maximize diversity [3, 8, 24], and in this paper, we further
expand it to our DiVE schemes.
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The basic idea underlying DiVE-Swap is to start with an
initial set 𝑆 of size 𝑘 and then iteratively modify the set 𝑆
in order to improve the value of the objective function 𝐹 (𝑆).
One of the main design criteria in local search algorithms is
the choice of the initial solution. In DiVE-Swap, we consider
two natural variants: 1) DiVE-iSwap, and 2) DiVE-dSwap. In
DiVE-iSwap, 𝑆 is initialized with the 𝑘 views that maximize
importance and can be easily obtained using our baseline
Linear-Importance (Sec. 4.1). Alternatively, in DiVE-dSwap,
𝑆 is initialized with the 𝑘 views that maximize diversity using
Greedy-Diversity (Sec. 4.1).

Apart from the initialization approach, both variants work
similarly. Particularly, in each iteration, each unselected view
𝑋𝑖 ∈ 𝑋 is interchanged with all views in 𝑆 (Algorithm 2
line 9). That is, the overall hybrid objective function is
computed as 𝐹 (𝑆∖𝑆𝑗 ∪𝑋𝑖). Then the one interchange that
leads to the highest new value for 𝐹 is applied and 𝑆 is
updated accordingly (Algorithm 2 line 14). Such iterations
are repeated until no more views can be swapped between
𝑋 and 𝑆, which is reached when no further improvement is
achieved in the value of 𝐹 (Algorithm 2 line 17).

In comparison to DiVE-Greedy, DiVE-Swap incurs the
same query processing cost 𝐶𝑄. Furthermore, it incurs even
higher 𝐶𝐷 cost for computing diversity, which can reach up to
𝑂

(︀
𝑘𝑛2)︀

. However, DiVE-Swap offers a valuable opportunity
for maximizing the number of pruned views, and in turn
reducing the query processing cost 𝐶𝑄, as described in the
next section.

5 THE DiVE SCHEMES WITH PRUNING
As described above, both DiVE-Greedy and DiVE-Swap
execute all the underlying queries for each view 𝑋𝑖 in 𝑋.
However, only a small fraction of those views is actually
included in the final top-k recommended set. Consequently,
a significant amount of query processing cost is incurred for
generating low-utility views. Thus, in this section, we propose
efficient techniques for pruning such low-utility views without
incurring the high cost for evaluating their importance score
(Sec. 5.1 and Sec. 5.2). Moreover, we also propose an adaptive
pruning method based on non-parametric predictive intervals
(Sec. 5.3). Such method is able to balance the tradeoff between
minimizing the number of executed queries and maximizing
the quality of recommendation.

5.1 Pruning for DiVE-Swap
In Sec. 4.3, we presented two variants of DiVE-Swap: 1)
DiVE-iSwap, and 2) DiVE-dSwap. While those two vari-
ants incur the same cost, they offer substantially different
performance when combined with our pruning techniques.
Particularly, consider DiVE-iSwap, which is initialized with
the 𝑘 views that maximize importance. To select those views,
all possible views have to be generated first, which in turn
requires processing all their corresponding queries. Hence,
DiVE-iSwap simply eliminates all opportunities for pruning
as all views are executed in the initialization phase. To the
contrary, DiVE-dSwap is initialized with the 𝑘 views that

maximize diversity. To select that initial set, no query execu-
tion is needed and the processing is limited to computing the
context-based deviation distances, which incurs a significantly
lower processing cost compared to query execution. Hence,
DiVE-dSwap provides a valuable opportunity for pruning
low-utility views.

Recall that under DiVE-dSwap, in each iteration a view
𝑋𝑖 ∈ 𝑋 is selected to replace a view 𝑆𝑗 ∈ 𝑆. The criterion
for that selected view is to improve 𝐹 (𝑆). That is, 𝐹 (𝑆∖𝑆𝑗 ∪
𝑋𝑖) > 𝐹 (𝑆). Hence, the task is to find that top-1 pair of
views < 𝑋𝑖, 𝑆𝑗 > that provides the maximum improvement
in 𝐹 (𝑆) once interchanged. Without pruning, that requires
iterating through 𝑆 and 𝑋 simultaneously and computing 𝐹
for each pair, which requires processing and generating each
view in 𝑋. To avoid such expensive processing and enable
pruning, the following steps are taken.

A list 𝐿 is created for all possible swap pairs < 𝑋𝑖, 𝑆𝑗 >,
where 𝐿 is sorted based on the diversity achieved if the swap
is to be made. Notice that up to this point the only processing
needed is to compute diversity without any query execution
to evaluate the importance of any 𝑋𝑖. Given that setting, the
task is clearly similar to top-k query processing, for which
numerous optimization tehniques are proposed (e.g.,[6, 9]).
Particularly, to find the top-1 view, each view 𝑋𝑖 is initially
assigned an importance equal to the upper bound 𝐼𝑢(Sec. 3.3).
In turn, the upper bound of 𝐹 (𝑆) achieved by 𝑋𝑖 is computed
as: 𝑚𝑎𝑥𝐹 (𝑆∖𝑆𝑗 ∪𝑋𝑖), which is based on the actual diversity
achieved by the swap, and the upper bound on importance.
As such, 𝑚𝑎𝑥𝐹 (𝑆∖𝑆𝑗∪𝑋𝑖) is compared against 𝐹 (𝑆), leading
to one of the following two cases: If 𝑚𝑎𝑥𝐹 (𝑆∖𝑆𝑗∪𝑋𝑖) > 𝐹 (𝑆),
then the swap < 𝑋𝑖, 𝑆𝑗 > can “potentially” improve 𝐹 (𝑆).
Hence, at that stage the view 𝑋𝑖 needs to be generated in
order to evaluate its actual importance 𝐼 (𝑋𝑖). Otherwise, the
pair < 𝑋𝑖, 𝑆𝑗 > is pruned if:

𝑚𝑎𝑥𝐹 (𝑆∖𝑆𝑗 ∪𝑋𝑖) < 𝐹 (𝑆).
Simply put, if the upper bound 𝑚𝑎𝑥𝐹 achieved by that

swap is still less than the current 𝐹 (𝑆), then the actual
𝐹 (𝑆∖𝑆𝑗 ∪ 𝑋𝑖) is guaranteed to be less than 𝐹 (𝑆) and the
pair < 𝑋𝑖, 𝑆𝑗 > can be safely ignored. More importantly,
since the 𝐿 is sorted by diversity, then the next views are also
guaranteed to provide no improvement and that iteration
of DiVE-dSwap reaches early termination. Hence, for all
the remaining views no query processing is needed, which
significantly reduces the overall cost.

5.2 Pruning for DiVE-Greedy
The pruning technique described above is directly applicable
to DiVE-Greedy. Particularly, recall that under DiVE-Greedy,
in each iteration the view with the highest utility score is
added to the partial set 𝑆 until |𝑆| = 𝑘. As described in Eq. 4,
such utility score 𝑈 (𝑋𝑖) is a weighted sum of two measures: 1)
the importance score of 𝑋𝑖 (i.e., 𝐼 (𝑋𝑖)), and 2) the distance
of 𝑋𝑖 from 𝑆 (i.e., 𝑠𝑒𝑡𝐷𝑖𝑠𝑡 (𝑋𝑖, 𝑆)). Thus, while the goal in
DiVE-dSwap is to find the pair < 𝑋𝑖, 𝑆𝑗 > that provides the
maximum improvement in 𝐹 (𝑆), the goal for DiVE-Greedy is
to find the view with the highest utility 𝑈 (𝐻 ). Hence, similar
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to DiVE-dSwap, a list 𝐿 of all views in 𝑋 is created such
that each 𝑋𝑖 is assigned an importance equal to the upper
bound 𝐼𝑢 and 𝐿 is sorted based on the diversity score of
each view 𝑋𝑖 to the current set 𝑆. Then, the highest utility
𝑈 (𝐻 ) is initialized to a default value of 0.0, and the list 𝐿 is
traversed in order. For each visited view 𝑋𝑖, the upper bound
on the utility achieved by 𝑋𝑖 (i.e., 𝑚𝑎𝑥𝑈 (𝑋𝑖)) is computed
using its actual diversity score and the upper bound on its
importance. If 𝑚𝑎𝑥𝑈 (𝑋𝑖) > 𝑈 (𝐻 ), then 𝑋𝑖 is generated
and its actual utility 𝑈 (𝑋𝑖) is calculated. Accordingly, if
𝑈 (𝑋𝑖) > 𝑈 (𝐻 ), then 𝑈 (𝐻 ) is set to be equal to 𝑈 (𝑋𝑖).
However, if 𝑚𝑎𝑥𝑈 (𝑋𝑖) < 𝑈 (𝐻 ), then early termination is
reached.

5.2.1 DiVE-dSwap vs. DiVE-Greedy. At this point, it is es-
pecially important to examine and contrast the pruning power
achieved by each of DiVE-Greedy and DiVE-dSwap. For
DiVE-Greedy, recall that pruning is attained for those views
where: 𝑚𝑎𝑥𝑈 (𝑋𝑖) < 𝑈 (𝐻 ). However, since DiVE-Greedy is a
constructive algorithm, the set 𝑆 is incrementally constructed
iteration by iteration until |𝑆| = 𝑘. Hence, in the first iter-
ations 𝑆 has a very small number of selected views with a
minimum of |𝑆| = 2. Naturally, when 𝑆 is a small set, then
most of the remaining unselected views in 𝑋 are expected
to exhibit high diversity, since the majority of them will be
very dissimilar from the small set of views in 𝑆. Accordingly,
for most of the views in 𝑋, the value 𝑚𝑎𝑥𝑈 (𝑋𝑖) will be rela-
tively high, due to achieving high score on diversity. Hence,
most views will fail to satisfy the pruning condition and are
consequently executed incurring high query processing cost.

To the contrary, DiVE-dSwap is initiated with a set 𝑆 of 𝑘
diverse views. Hence, it will initially have a reasonably high
𝐹 (𝑆). Moreover, many views in 𝑋 will be “close” to some view
in 𝑆. Hence, the swaps that involve those views will score low
on diversity, and in turn low 𝑚𝑎𝑥𝐹 . Since pruning happens
when 𝑚𝑎𝑥𝐹 (𝑆∖𝑆𝑗 ∪𝑋𝑖) < 𝐹 (𝑆), the combination of those
two factors above (i.e., high 𝐹 and low 𝑚𝑎𝑥𝐹 ) allows for
many views satisfying the pruning condition, which improves
the pruning power of DiVE-dSwap. That pruning power
can be further improved by relaxing the assumption about
maximum importance 𝐼𝑢, as described next.

5.3 Predictive Interval for Adaptive Bounds
In general, both the pruning schemes provided by DiVE-
Greedy and DiVE-dSwap rely on the fundamental idea of
evaluating the upper bound of the benefit provided by a view
𝑉𝑖 towards the objective 𝐹 . If that maximum benefit is still
not enough to consider 𝑉𝑖 to join 𝑆, then 𝑉𝑖 is pruned and
its query processing cost is saved. Moreover, to evaluate that
upper bound, both schemes compute the actual diversity
offered by 𝑉𝑖 and instead of computing its actual importance,
it is substituted with the maximum attainable importance
score 𝐼𝑢. Naturally, overestimating 𝐼 (𝑉𝑖) leads to overesti-
mating its benefit and consequently limited pruning power
is achieved. Meanwhile, for most datasets, 𝐼𝑢 is in fact an
overestimation of 𝐼 (𝑉𝑖). Hence, our goal in this section to

provide a tighter bound on 𝐼 (𝑉𝑖), which allows for maximum
pruning while maintaining the quality of the solution.

Recall that 𝐼𝑢 is achieved when for each group 𝑎𝑖, the
corresponding value 𝑔𝑖

𝐺 in 𝑃 [𝑉𝑖 (𝐷𝑅)] or 𝑃 [𝑉𝑖 (𝐷𝑄)] is zero.
Hence, 𝐼𝑢 is a theoretical bound for the maximum impor-
tance achieved by any view in any dataset. For most real
datasets, however, that condition is rarely satisfied and the
actual upper bound 𝐼𝑎𝑢 is typically much smaller than 𝐼𝑢.
Meanwhile, a hypothetical pruning scheme that utilizes that
actual upper bound 𝐼𝑎𝑢 is expected to deliver more pruning
power than the schemes using the theoretical upper bound
𝐼𝑢, especially when 𝐼𝑎𝑢 ≪ 𝐼𝑢. In practice, however, that
hypothetical scheme is not achievable since obtaining the
value 𝐼𝑎𝑢 requires executing all the possible views, which is
clearly in conflict with the goal of pruning.

Accordingly, rather than using overestimated 𝐼𝑢 or ob-
taining the actual 𝐼𝑎𝑢, our goal is to estimate 𝐼𝑎𝑢 with high
accuracy and minimum number of query executions. In partic-
ular, given the set of possible views V, the goal is to estimate
the maximum importance 𝐼𝑎𝑢 given by some view in V. How-
ever, estimating the maximum value of a population is known
to be a challenging problem, as opposed to estimating other
statistics such as average or sum [7]. That challenge is further
emphasized when the values exhibited by the population are
skewed and do not follow a typical normal distribution, which
is typically the case for the importance value of views.

Thus, instead of estimating 𝐼𝑎𝑢, we rely on non-parametric
predictive interval models to determine its value with certain
level of confidence without any assumption on the population
[7]. To apply that model, some sample views are executed and
the maximum importance observed in that sample is recorded
as 𝐼𝑎𝑢. To determine the number of samples, a Predictive
Interval (PI) is to be defined, such that: 𝑃 𝐼 =

(𝑚− 1)
(𝑚 + 1) , where

𝑚 is the number of samples.
For instance, setting 𝑚 = 19, results in PI = 90%. That

is, 90% of the time, the importance value of an unseen view
𝑉𝑖 will be less than the maximum importance seen so far.
Clearly, the higher the PI value, the higher the accuracy of
𝐼𝑎𝑢, but also requires executing more views. In this work,
we find that a value of 𝑃 𝐼 = 97% is able to strike a fine
balance between minimizing the number of executed queries
and maximizing the objective 𝐹 , as shown next.

6 EXPERIMENTAL EVALUATION
Table 1 summarizes the different parameters used in our
evaluation (default values are in bold). We conducted our
experiments over the following datasets: 1) Heart Disease
Dataset 2: This dataset is comprised of 9 dimensional at-
tributes and 5 measure attributes, using four aggregate func-
tions, resulting in a total of 9×5×4 = 180 possible views, and
2) Airline (Flights) Dataset 3: This dataset is comprised of 7
dimensional attributes and 4 measure attributes for a total
of 7 × 4 × 4 = 112 possible views. While its dimensionality

2http://archive.ics.uci.edu/ml/datasets/heart+Disease
3http://stat-computing.org/dataexpo/2009/the-data.html
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Table 1: Parameters testbed in the experiments

Parameter Range (default)
datasets Heart disease, Flights

diversity weight ratio 3(𝐴) : 2(𝑀) : 1(𝐹 )
tradeoff weight 𝜆 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0

result set (size of k) 5, 15, 25, 35
prediction interval % 80 , 85, 90, 95, 97, 98

(a) Heart disease dataset

(b) Flights dataset

Figure 4: Impact of 𝜆 on 𝐹 (𝑆), k = 5
is lower than the heart disease data, it is a relatively large
dataset of almost one million tuples, which helps in evaluating
the incurred query processing time. For each experiment, the
performance measures are averaged over a query workload of
ten random queries submitted to select ten different subsets.
The impact of 𝜆 on 𝐹 : Figure 4 shows how the performance
of each scheme in terms of 𝐹 (𝑆) is effected as the value
of 𝜆 varies from 0 to 1. Clearly, for the lower values of
𝜆, the highest 𝐹 (𝑆) is achieved by Linear-Importance. To
the contrary, the Greedy-Diversity method achieves highest
values of 𝐹 (𝑆) as the 𝜆 approaches 1. Hence, there is a
crossover between the two schemes. However, our proposed
DiVE schemes have stable performance for all values of 𝜆
and outperforms Linear-Importance and Greedy-Diversity.
Execution time evaluation In this experiment, we measure the
cost of DiVE schemes. Figure 5 plots the execution time for
Flights dataset with 𝑘 = 5 and 𝜆 = 0.5. The total execution
time is split into the query execution time 𝐶𝑄 and the di-
versification cost 𝐶𝐷. It is clear from Figure 5 that the total
execution time 𝐶𝑇 is dominated by the cost of generating
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Figure 5: Cost of DiVE on Flights dataset, k =5, 𝜆 = 0.5

Figure 6: Impact of Static pruning
the views 𝐶𝑄. Hence, the minimum cost is incurred by the
Greedy-Diversity which only computes diversity. For other
methods without adaptive pruning, the 𝐶𝑄 is same as all
views are generated only once. However, the cost of diversifica-
tion 𝐶𝐷 is slightly higher for DiVE-iSwap and DiVE-dSwap
as compared to the DiVE-Greedy due the higher number
of iterations. Moreover, the Figure also shows the cost of
both schemes with adaptive pruning. It shows that adaptive
pruning can reduce the 𝐶𝑄 cost significantly.
Impact of static Pruning In this experiment, we present the
performance of our proposed pruning techniques in terms
of the number of pruned queries. The higher number of
pruned queries result in the higher cost savings in the total
query execution time. Figure 6 shows the performance of our
static pruning technique using the theoretical upper bound
of importance score 𝐼𝑢. In this and next experiments, DiVE-
iSwap is not evaluated as it executes all view queries for
the initial set selection and any pruning afterwards is not
possible. Moreover, due to space limit, we use only the heart
disease dataset in the next experiments. For both schemes
DiVE-Greedy-Static and DiVE-dSwap-Static, since the 𝐼𝑢

value far from the actual importance scores of individual
views, the percentage of pruned queries is 0 for lower values
of 𝜆. Only for 𝜆 close to 0.9 some queries get pruned. For
instance, at 𝜆 = 0.9, DiVE-Greedy-Static prunes almost 20%
queries while DiVE-dSwap-Static prunes 25% queries.
Impact of Adaptive Pruning In this experiment, we analyze
the performance of adaptive pruning technique under differ-
ent values of 𝜆 and prediction interval 𝑃 𝐼. As shown in Figure
7, DiVE-Greedy-Adaptive is able to prune more queries com-
pared to DiVE-Greedy-Static (Figure 6). It is also able to
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Figure 7: DiVE-Greedy with Adaptive Pruning

Figure 8: DiVE-dSwap with Adaptive Pruning

Figure 9: Impact of Adaptive pruning on 𝐹 (𝑆)

prune even for lower 𝜆. The number of queries pruned in-
crease significantly for higher values of 𝜆. Figure 8 shows the
performance of DiVE-dSwap-Adaptive with different values
of 𝑃 𝐼. In comparison to DivE-Greedy-Adaptive, the number
of pruned queries by DiVE-dSwap-Adaptive are much higher
for all values of 𝜆. The interesting observation is the fact that
DiVE-dSwap-Adative is able to prune 15% queries for 𝜆 =
0.2. For higher values of 𝜆 the percentage of pruned queries
is between 60% and 90%. Similar to DiVE-Greedy-Adaptive,
highest number of queries are pruned for 𝑃 𝐼 = 0.80.

Further, we evaluate the effectiveness of adaptive pruning
in terms of 𝐹 (𝑆). Figure 9 shows the loss on 𝐹 (𝑆) in com-
parison to 𝐹 (𝑆) achieved by Hypothetical methods. The loss
for DiVE-dSwap-Adaptive is 0% for 𝑃 𝐼 = 0.97, With a larger
sample size the accuracy of approximated importance score
is higher. For a smaller sample size of 𝑃 𝐼 = 0.80, there is 0%
loss while 𝜆 = 0 because at the moment there are no pruned
queries. However, there is a maximum loss of 10% at 𝜆 = 0.1.
The loss on 𝐹 (𝑆) decrease as 𝜆 increases as the impact of

importance score becomes smaller in the hybrid objective
function. Meanwhile, starting 𝜆 ≥ 0.5 the loss is 0%.

7 CONCLUSIONS
In this work, we propose the DiVE scheme for view rec-
ommendation in visual data exploration. DiVE combines
importance and diversity into a hybrid utility function to
provide full coverage of the possible insights to be discovered.
Moreover, DiVE also leverages the properties of both the
importance and diversity metrics to prune a large number
of query executions without compromising the quality of
recommendations.
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