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Abstract. Bayesian Network Probabilistic Graphs have recently been
applied to the problem of discovery drug-drug interactions, i.e., the iden-
tification of drugs that, when consumed together, produce an unwanted
side effect. These methods have the advantage of being explainable: the
cause of the interaction is made explicit. However, they suffer from two
intrinsic problems: (1) the high time-complexity for computing causa-
tion, i.e., exponential; and (2) the difficult identification of causality di-
rections, i.e., it is difficult to identify in drug-drug interactions databases
whether a drug causes an adverse effect – or vice versa, an adverse effect
causes a drug consumption. While solutions for addressing the causality
direction identification exist, e.g., the CARD method, these assume sta-
tistical independence between drug pairs considered for interaction: real
data often does not satisfy this condition.
In this paper, we propose a novel causality discovery algorithm for drug-
drug interactions that goes beyond these limitations: Domain-knowledge-
driven Causality Discovery (DCD). In DCD, a knowledge base that con-
tains known drug-side effect pairs is used to prime a greedy drug-drug
interaction algorithm that detects the drugs that, when consumed to-
gether, cause a side effect. This algorithm resolves the drug-drug inter-
action discovery problem in O(n2) time and provides the causal direction
of combined causes and their effect, without resorting to assuming statis-
tical independence of drugs intake. Comprehensive experiments on real-
world and synthetic datasets show the proposed method is more effective
and efficient than current state-of-the-art solutions, while also address-
ing a number of drawbacks of current solutions, including the high time
complexity, and the strong assumptions regarding real-world data that
are often violated.

Keywords: Causality Discovery · Bayesian Network · Drug-Drug Inter-
action.

1 Introduction

An adverse effect is an undesired or harmful event caused by the consumption of
a drug, or interactions between drugs. Adverse effects caused by any single drug
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Fig. 1. An example of how two drugs, administered to treat two unrelated conditions,
may interact to cause a severe adverse effect.

have been investigated in detail by medical researchers. However, it is often
the case that an ill person would consume more than one drug at any given
time, e.g., patients with AIDS or cancer usually need to consume a mixture
of drugs at the same time [18]. In these cases, adverse effects can be caused
by drug-drug interactions. A drug-drug interaction occurs when a consumed
drug interacts with another consumed drug, e.g., aspirin consumed together with
warfarin may cause excessive bleeding [5]; we denote this with the following
notation aspirin + warfarin → bleeding . Adverse effects caused by drug-
drug interactions are often more severe than those from single drugs. This is
exemplified in Figure 1, where the blue drug effectively treats stomach ache
with no side effect. The red drug treats knee pain, but it causes a non-severe
adverse effect, with a certain likelihood. However, when taken together to treat
stomachache and an unrelated knee pain, the likelihood of a severe adverse effect
increases due to the drug-drug interaction.

Adverse effects caused by drug-drug interactions have a significant impact
on public health. Adverse effects cause more than 100,000 deaths and 770,000
injuries per year in the United States alone, costing approximately USD 136.8
billion [9]; and around 30% of adverse effects are reported to be possibly caused
by drug-drug interactions [17]. Adverse effects can be prevented if the cause of
the drug-drug interaction is known. Unfortunately, it is difficult to perform bio-
logical experiments to discover the relation. These experiments in fact are costly,
complicated and time-consuming. In addition, it is also impractical, if not impos-
sible, to test all possible combinations of drugs via biological experiments, when
more than two drugs are involved in a drug-drug interaction [2]. However, the
availability of data related to suspected adverse effects as reported by health care
authorities, health care providers, drug manufacturers and patients1, offers the
opportunity to study drug-drug interactions causing adverse effects (DDICAE)
by using computational methods instead of biological experiments [3].

Most computational methods for discovery of DDICAE are based on statis-
tical association or correlation [19, 16, 6]; however, they do not guarantee that
the discovered relations between multiple drugs and adverse reactions are due

1 For example, the Food and Drug Administration (FDA) in the United States has
collected this type of data in the FDA Adverse Event Report System (FAERS).
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to causal reasons. Previous attempts to model causal relations for the DDICAE
problem, namely the Causal Association Rule Discovery (CARD) method [3],
exist, but they are computationally infeasible, requiring exponential time to run
when the number of drugs is considered for each reaction.

In this article, we propose a novel method for DDICAE discovery which
extends upon the Bayesian Constraint-based Causality (BCC) model since BCC
meaningfully represents causal relationships and effectively handles the large size
of data sets, although it also has exponential running time. Our method aims
to (1) solve the direction ambiguity problem2 using conditional independence
to prune causal and non-causal relations not involved in DDICAE and without
resorting to the V-structure property of BCC3, and (2) reduce the computational
complexity of DDICAE discovery using greedy heuristics to select candidate
drugs.

Our method exploits existing domain knowledge. For example, suppose the
causal relation between a single drug and an adverse effect is already known
(e.g., warfarin causes bleeding, warfarin → bleeding ). Then, we can exploit
this knowledge to identify which drug that, consumed together with the drug for
which an adverse effect is known, increases the likelihood of the adverse effect to
occur, e.g., aspirin consumed together with warfarin may increase the chances
of excessive bleeding, aspirin+ warfarin→ bleeding + +. This knowledge is
used to address the causal direction ambiguity problem because the known causal
relation can be used to identify the causal direction within newly discovered
causal relations. In addition, the domain knowledge can be exploited to reduce
the computational complexity in combination with conditional independence by
pruning candidate drugs that are unrelated to the interaction.

2 Related Works

In computational studies of DDICAE, correlations and associations are the key
statistics being exploited, e.g., methods based on logistic regression [19], associa-
tion rules [16] and bi-clustering [6]. These methods only focus on the correlation
between drug-drug interactions and adverse effects to predict DDICAE, rather
than finding the causal relations – which could provide superior insights into the
relationship. Note in fact that correlation doesn’t necessarily imply causation:
causation happens when a change of the causal variable (e.g., consumption of
both red and blue drugs) leads to a direct change of the effect variable (e.g.,
bleeding) [15]. In this work, causal variables are drugs, and effect variables are
adverse effects. If causal relations between combined drug intake and adverse ef-
fect were known, then drug prescriptions could be adapted to prevent or mitigate
the adverse effects.

Beyond methods that rely just on correlation or associations to discover
DDICAE, computational methods that directly model causal relations have been

2 The causal relationship whose direction is unknown
3 The V-structure property, in fact, may not identify all causality structures in real-

world DDICAE data [18], although it can identify the direction in causality discovery.
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proposed. In Causal Bayesian Network (CBN), causes and effects are modelled
using directed acyclic graphs; CBN has been shown to be effective beyond tasks
in DDICAE [15, 20]. However, for practical purpose, CBN is computationally
expensive when more than a few hundred variables are involved. In fact, in
this method all possible network paths need to be considered and computation
time grows exponentially based on the number of variables (this is an NP-Hard
problem) [4]. A popular implementation of CBN is the PC algorithm [13].

The Bayesian Constraint-based Causality (BCC) model extends CBN to fea-
sibly handle data with a large number of variables [1]. To obtain more efficient
and scalable performance, BCC limits the discovery of causal relations only to
local structures rather than considering the whole Bayesian graph as in CBN.
However, in BCC, computation time depends on the number of combinations
of variables in the conditional independence tests used to determine a causal
relation – these can still be high, thus rendering the method impractical in real
situations. In addition, most existing BCC-based approaches, such as Markov
Blanket, can find causal relations between variables but cannot identify the di-
rection of the relations (because they rely on measuring conditional independence
for a local graph): we name this specific problem as causality direction ambiguity.
Most BCC approaches can not solve the causality direction ambiguity problem.

Previous work has combined association rules with either partial association
test [8] or cohort studies [10] to discover causal relations, including their direc-
tion. The partial association test is calculated after discovering association rules
to confirm their causality – the key intuition of partial association test is similar
to that of conditional independence. In cohort studies, causality relations are
found using association rules on observational data fixing the specific control
data. These methods are computationally impractical because their run time
grows exponentially with respect to the size of variables in the data.

To our knowledge, Causal Association Rule Discovery (CARD) [3] is the
only CBN-based method to discover causal relations along with their direction
in DDICAE, thus comparable to the method we propose in this work. CARD
uses association rules to select significant candidate drugs. Candidate drugs are
then iteratively paired and tested for interactions [15] or common-effect relations
(or V-structure)4 [20]. However, this method makes restrictive hypotheses on the
relations displayed by the data, and these are often not satisfied by real-world
data. In addition, CARD becomes exponential with respect to the number of
drugs, because it computes every possible combination – the method we propose,
described in Section 3, instead offers a polynomial time (O(n2)) solution to the
problem of DDICAE discovery.

3 Proposed Method

The aim of DDICAE discovery is to identify two or more drugs that cause an
adverse effect. Conventional DDI systems typically only consider two interacting

4 The relationship describing the causes that are marginally independent become de-
pendent when their common effect is given.
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drugs. We introduce Domain-knowledge-driven Causality Discovery (DCD), a
novel constraint-based method that uses conditional independence to discover
causality. DCD is guided by exploiting pre-existing known drug-drug interaction
adverse effect causation contained in domain knowledge resources. Our method is
also made efficient by our novel approach to pruning unrelated candidate drugs.

Our method relies on conditional independence testing because an effective
way to define causation between two variables is to (1) measure statistical de-
pendence between the variables, and (2) ensure no other variables given as the
condition eliminate their statistical dependence. Conditional independence can
be exploited by iteratively determining whether to remove drugs that are not a
direct cause of a target adverse effect. These steps are applied in the pruning
stage of DCD to remove drugs that do not meet the necessary criteria to be con-
sidered candidate drugs (i.e., interacting drugs causing the target adverse effect).
We define interacting drugs as conjunctive-combined-cause drugs. Finally, DCD
employs a greedy optimisation step in order to find conjunctive-combined-cause
drugs from candidate drugs that have the strongest statistical-dependence score.

Next we formally define the proposed method, and we detail the key steps of
conditional independence testing and pruning; a compendium of the terminology
and acronyms used in this paper is provided in Appendix I.

3.1 Formal Description of our Method

For the notation in this paper, we use A ⊥ B to represent statistical indepen-
dence between A and B. A ⊥ B | C represents the conditional independence of
A and B, given C. The causation between two or more variables is expressed
by →. The direction indicates which variables cause the other, e.g., A → C,
and (A,B) → C represents multiple causes of A and B causing C. We denote
D = {d1, d2, ..., dn} as the drug consumption indicators for a patient, where di
is the binary indicator representing whether a patient has consumed drug i (i.e.,
di = 1 if the patient uses this drug). Similarly, s denotes the binary occurrence
indicator of an adverse effect. We further denote dm as the drug from a domain
knowledge resource that is known to cause an adverse effect s. Our model is
provided as input a target adverse effect s, the domain knowledge drug dm as
a given cause, and other drugs D′ excluding dm (i.e., D′ =

{
d1, d1, ..., dn

}
and

dm 6∈ D′). D′ contains the possible drugs that form the conjunctive combined
cause with dm. Formally, our model identifies O ⊆ D′ drugs that are actually
the conjunctive combined cause. Note that O can be empty if no drugs with
significant interactions are found.

O = argmax
di∈D′

Positive Dependence(dm, s | di) (1)

Equation 1 describes how O is obtained. DCD selects O that has the largest
dependence value (calculated using the Chi-squared test). Each candidate drug
that is added to the combined-cause drugs set provides better positive PMI
values than the conjunctive-combined-cause drugs set without that candidate
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dm ds

omeprazole vancomycinc.	difficile

Adverse	
Effect

Cure
dm ds

aspirin bleeding warfarin

Adverse	
Effect

Adverse	
Effect

(1) (2)

dmd s

aluminum
hydroxideibuprofen constipation

Adverse	
Effect

Prevent	Adverse
Effect

(3)

Fig. 2. Three examples of causal dependency (Sub-figures 1-3) that exist among the
drugs: (1) domain knowledge drug and the adverse effect, (2) combined cause of s, and
(3) consequence or cure of s.

drug. This approach selects the set of DDICAE that is most likely to be causes
of the adverse effect.

3.2 Conditional Independence

Our method exploits the conditional independence and the domain knowledge
drug and adverse effect to prune the unrelated drugs to the DDICAE (might be
correlated or not). Then it uses a greedy algorithm based on Pointwise Mutual
Information (PMI) and the Chi-squared statistical hypothesis test to select the
highest positive dependence candidate drugs that have high probability to be
DDICAE.

In DCD, correlation or dependence is important to screen for possible causal
relations. We use the Chi-squared statistical hypothesis test [12] to test for in-
dependence. To find combined interacting drugs and the adverse effect, we focus
primarily on the positive dependence relation as it accurately represents the co-
occurrence DDICAE. We use both the Chi-squared test and Pointwise Mutual
Information (PMI) [7] to measure positive dependence between di ∈ D and the
dm which causes s. The Chi-squared test and PMI can solve the drawbacks of
each other. The Chi-squared test finds the strength of the dependence when it
is divided by the number of observations; however, it cannot discriminate be-
tween positive and negative dependence. In contrast, PMI cannot detect the
strength of the dependence in sparse datasets where the number of samples with
the same variables values is small. However, PMI can differentiate positive de-
pendence from negative dependence.We thus use the Chi-squared test to find
which di ∈ D increases dependence strength of co-occurrence of the drug-drug
interaction and s, and use PMI to select only positive dependence cases (e.g.,
pmi(dm = 1, d = 1; s = 1) > 0 ).

3.3 Pruning

The pruning step aims to eliminate as many unrelated drugs as possible by
identifying the drugs that are strongly correlated and positive dependent on
dm. This step also removes any drugs which have opposite causal direction with
dm that cause s. As the result, causal ambiguity (the causal relationship whose
causal direction is unknown) is no longer a problem.
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There are three possible cases (C1, C2, and C3) of causality existing among
the drugs (d), the domain knowledge drug (dm) and the adverse effect (s):

C1: dm → s← d;

C2: dm → s→ d; and

C3: d→ dm → s

As illustrated in Figure 2.1, C1 is the conjunctive combined cause (i.e., aspirin
→ bleeding ← warfarin indicates that both aspirin dm and warfarin d causes
bleeding s). In C2 (Figure 2.2), the drug is the consequence of an adverse effect
instead of a confounded (i.e., omeprazole → c. difficile → vancomycin

indicates that omeprazole dm and vancomycin d both cause c. difficile s). In C3
(Figure 2.3), the candidate drug is the cause of dm instead of the confounded of
dm (i.e., ibuprofen → aluminum hydroxide → constipation indicates that
ibuprofen d is the reason to use aluminium hydroxide dm, which is the cause of
constipation s).

Equation 2 describes our pruning step. Here, the candidate drug d with the
structure in C2 and C3 are removed from the candidate set D′. Any candidate
drugs with any structures in C2 are removed using conditional independence:
dm ⊥ d | s = 1. Any candidate drugs d with C3 can also be removed using con-
ditional independence: d ⊥ s | dm = 1. In addition, drugs that are independent
to dm and s, or drugs that can be considered as unrelated to dm and s are also
removed when (dm ⊥ d | s = 1) ∨ (d ⊥ s | dm = 1). In this pruning process, the
remaining candidate drugs have a higher probability to cause s. Next, the greedy
process of our algorithm is performed to select the most suitable candidate drugs
to be the combined causes.

D′ =

{
D′ − {d}, if (dm ⊥ d | s = 1) ∨ (d ⊥ s | dm = 1)

D′, otherwise
(2)

The pruning step continues each iteration in the greedy method. A candidate
drug is removed if it is dependent on O using the conditional independence
method as describes in Equation 3.

D′ =

{
D′ − {d}, if (d ⊥ s | dm, O = 1)

D′, otherwise
(3)

We next describe algorithmically our iterative pruning algorithm. In each
iteration, based on the detected conjunctive combined cause from previous it-
erations, the drug which has the highest probability to cause s is considered
as the candidate drug. If the candidate drug is a correct causal drug, then it
is inserted into a conjunctive combined cause for the next iteration. Our prun-
ing algorithm detects a local-optimal solution (the global optimal solution is an
NP-hard problem and cannot handle complex data efficiently).

The overall process of our proposed algorithm is illustrated in Algorithm 1.



8 S. Subpaiboonkit et al.

Algorithm 1 Line 1 is the iteration for the validation of C2 (Line 2) and C3
(Line 5) mentioned above. Once the relation of a drug, the domain knowledge
drug and the adverse effect is classified as C2 or C3, this drug is no longer
considered. Line 10 identifies the drug which can most significantly increase the
dependence strength between dm and s based on the conjunctive combined cause
detected from previous iterations by using the greedy strategy. Line 11 removes
drugs that may not be the direct cause of s. On line 13, if there is no such drug
detected, then the current conjunctive combined cause is the final result. On Line
15, PMI is used to identify whether the dependence is positive or negative. For
PMI validation, if di ∈ O causes a lower positive dependence than the total
combined causes set when not including them in O, then di is not considered.
However, it may be considered in the future iterations, because the PMI for
that drug may change with other conditions.

Input: Domain knowledge drug dm and adverse effect s
Other drugs D′ = {d1, d2, ..., dn}
Threshold of dependency value th = the critical value of Chi-square when significance
level α = x
Output: Conjunctive combined cause O
O = {}; //initialise output variable as an empty set
T = D′; //temporary variable as a copy of D′

Start

1: for each di do
2: if chi(di, dm | s) < th then
3: D′ = D′ − {di};
4: continue;

5: if chi(di, s | dm) < th then
6: D′ = D′ − {di};
7: continue;

8: T = {}; //temporary variable for the drugs failed in PMI validating
9: while true do

10: di = argmax
d∈D′−{O,T}

chi(dm, s | O, d)

11: if chi(di, s | dm, O) < th then
12: D′ = D′ − {di};
13: continue;

14: if chi(dm, s | O, di) <= chi(dm, s | O) then
15: break;

16: if pmi(dm, s | O, di) <= pmi(dm, s | O) then
17: T = T ∪ di;
18: continue;
19: else
20: O = O ∪ di;
21: T = {}; //set the temporary variable to the empty set for the next loop

End
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3.4 Time Complexity Analysis

Next we analyse the time complexity of the proposed algorithm. The pruning
step (lines 1-8) costs O(n), where n is the number of drugs considered for DDI
(except the drugs contained in the domain knowledge). If at least one drug is not
pruned, then we need to consider the greedy step (lines 9-21). Line 10 requires
n operations for the worst case in which every candidate drug will be included
to form the combined causes, thus contributing O(n) to the algorithm’s time
complexity. Lines 11 to 18 consider three constant time operations (O(1)). These
iteration steps (lines 9-21) are considered until all drugs have been discounted
(n in the worst case), or the break in line 15 occurs. Thus the greedy step costs
O(n) ∗ [(O(n) + O(1)] = O(n2). The total time complexity of the algorithm is
therefore O(n) + O(n2) = O(n2).

4 Experiments

Both synthetic and real-world data are used to empirically validate the effective-
ness of the proposed method. We use synthetic data to compare our outcome with
CARD – other baseline methods for causality discovery such as CBN and BCC
are not considered because of the extremely high time complexity for the DDI
cases considered in our experiments. Unfortunately, we cannot either compare
CARD with our method on real-world data because CARD could not complete
its execution due to its exponential time complexity – this highlights the major
problem of CARD, which our method aims to resolve. The hardware used for
the experiment was a server with an Intel i7-6700 CPU and 16G of RAM.

4.1 Domain Knowledge

Our method relies on the availability of domain knowledge about drugs that are
known to cause the target adverse effect. We acquire this data from DailyMed,
a database of trustworthy adverse effects extracted from official drug labels5.

4.2 Real-World Data

We use approximately 300,000 patient records collected from FAERS. The ex-
tracted data contains missing values and duplicates, as noted previously by oth-
ers [14, 3], and thus we preprocess the data according to previous works. Du-
plicate reports are removed when they contain at least eight drugs or adverse
effects, and all drugs, adverse effects and patient demographic information are
the same as in [3]. Reports with missing adverse effect are not considered. Only
drugs and adverse effects that occur in at least 5 reports are included. Two
FAERS attributes are considered in our experiments: ‘adverse event’ and ‘drug
name’, having approximately 10,000 and 40,000 values, respectively. For drug
names, we conflate different names of the same drug to a unique identifier using

5 https://dailymed.nlm.nih.gov/dailymed/
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a method proposed by Banda et al. [2]. We consider all types of adverse effects
to provide all available ranges of adverse symptom severity.

In this dataset, a patient may have multiple records indicating that they may
take many medicines to cure one or more diseases, and report several adverse
effects: it is unclear what drug or combination of drugs has provoked which
adverse effect(s). That is, the true causal DDICAE cannot be directly identified
from FAERS data. In fact, for each report, the recorded set of drugs usage and
adverse effects might be consistent with many possible cases: e.g., (1) some DDIs
caused many adverse effects, (2) there are more than one DDICAE, (3) some
drugs are used to cure adverse effects that are not the DDI, (4) some drugs
do not cause any reported adverse effects, etc. Because of this, the reliance
on methods that only depend on correlation between datapoints/features may
identify relations between drugs and adverse effects that are actually not causal
DDICAE effects – and thus fail to reveal correct insight relationships.

To evaluate on real-world data, the top ten causal drug-drug interactions
results discovered using DCD are selected, based on the ranking from the de-
pendence strength of the relations and their positive dependence measurements.
To evaluate the prediction correctness, two reliable pharmaceutical drug-drug
interaction databases, MedicinesComplete (MedComp)6 and Drugs.com7, are
selected. The prediction results that do not match with the ground truth in the
databases are not necessarily incorrect: the causality might not be confirmed or
may have not been yet discovered by clinical or biological methods yet. In our
evaluation, the label ‘Not Found’ is used for a drug-drug interaction that is not
found in these databases.

4.3 Synthetic Data

The DDICAE predictions from real-world FAERS data only offer limited ground
truth data and thus do not allow for a complete, reliable evaluation. Thus, in
addition to FAERS data, we generate synthetic evaluation data using Tetrad8,
a tool widely used in previous studies to generate causal Bayesian graphs for
evaluation [1, 11]. Tetrad generates the directed acyclic causal Bayesian graph
with known causal paths between variables. We generate three groups of graphs,
the graphs with 50, 100 and 200 variables, to show the applicability of our
method. In our setup, each group contains 10 random graphs and each variable
is randomly assigned its directed causal links to connect to other nodes (between
0 to 7 causal links). Each graph contains 10,000 records, no loops, and any two
nodes can only have one edge between each other. The conditional probability
tables of the causal Bayesian networks are also randomly generated. Binary data

6 MedicinesComplete published in Pharmaceutical Press and the Royal Phar-
maceutical Society: https://www.medicinescomplete.com/mc/alerts/current/drug-
interactions.htm

7 Data sources from Micromedex, Multum and Wolters Kluwer databases:
https://www.drugs.com/drug interactions.php

8 http://www.phil.cmu.edu/tetrad/



Causality Discovery with Domain Knowledge for DDI Discovery 11

Table 1. The average Chi-square(%) and average PMI (log scale) of predicted DDI
and the adverse effect compared to dm and s, by DCD for variable sizes 50,100 and
200 and FARES.

Method 50 100 200 FAERS

Chi-square 1,349.77% 1,167.22% 947.09% 172.22%

PMI (log) 0.13 0.14 0.12 0.42

for variables in all records are generated based on the conditional probability
tables using the Bayesian Instantiated Model. The generated data is preprocessed
in the same manner as FAERS data. In the case of domain knowledge from
synthetic data, for each child node having at least one parent, one parent is
randomly selected as domain knowledge.

To illustrate the effectiveness of our method on the synthetic data, we mea-
sure the precision of discovering drug-drug interactions. In our case, precision is
defined as TP/(TP +FP ), where TP is the number of correct predicted causal
links, and FP is the number of incorrectly predicted causal links.

Recall cannot be used for evaluation in both synthetic and real-world data
because we do not know which predicted groups of drugs are the true conjunctive
combined causes of the adverse events. In place of recall, we use Chi-squared
value and PMI. The drug-drug interaction with the highest Chi-squared value
and positive PMI is considered significant (with respect to dm and s). We use
this method for a recall-oriented evaluation for both synthetic and real-world
data.

5 Results and Discussion

First, we evaluate whether DCD produces a higher quality conjunctive-combined
causes compared to inputted domain knowledge and target effects from synthetic
data and FAERS. In Table 1, the results of DCD are compared using domain
knowledge and the target adverse effects. The evaluation shows that the out-
comes have stronger dependence relationship in both synthetic data and causal
drug-drug interaction and its adverse effect in FARES measured by the Chi-
square. The strength of positive dependence relationships measured with the
PMI in our outcomes is also stronger. These results imply that the interaction
outcomes causing related effects from both synthetic data and real-world data
have a higher probability to be a true cause outcome compared to the domain
knowledge and its adverse effect.

Table 2 presents the results of drug-drug interactions and adverse effects
from FARES as predicted by DCD. The top ten predictions with the highest
positive dependence are selected to be validated with the two pharmaceutical
databases, MedComp and Drug.com. Note that DCD can detect DDI cases that
have more than 2 drugs (eg. such as LIPITOR + CRESTOR + NEXIUM →
Hypertension). This table shows that nine out of ten drug-drug interactions
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Table 2. Comparison between drug-drug interactions and their adverse effect predicted
by DCD and found in selected reliable pharmaceutical databases (D→Drugs.com and
M→MedComp).

DDI predicted by DCD Adverse Effect Found in Database

ENBREL + HUMIRA Sepsis M, D
PREDNISONE + ENBREL Infections D
ENBREL + REMICADE Drug ineffective D
ENBREL + HUMIRA Pain M, D
METHOTREXATE + ORENCIA Drug ineffective Not Found
ENBREL + PLAQUENIL Drug ineffective M, D
TEMAZEPAM + GABAPENTIN Dizziness D
PREDNISONE + ENBREL Pain D
LIPITOR + CRESTOR + NEXIUM Hypertension D
ENBREL + METHOTREXATE Fatigue D

Table 3. The average precision (%)
on synthetic data of DCD compared to
CARD for variable sizes 50,100 and 200.
Highest values are indicated in bold.

Method 50 100 200

DCD 91.67 86.96 83.61
CARD 84.61 76.74 59.01

Table 4. The average computation time
(seconds) of DCD compared CARD for
variable sizes 50, 100 and 200. Lowest val-
ues are indicated in bold.

Method 50 100 200

DCD 0.36 2.95 10.95
CARD 55.84 314.17 1,918.78

and their adverse effect results from FARES predicted by DCD are found in
Drugs.com, and three of them are found from both of databases. Only one
case, METHOTREXATE + ORENCIA→ Drug ineffective, is not found in both
databases. This outcome can be a candidate for biological tests to validate the
causality in the future.

Next, we evaluate the pruning on synthetic data. DCD successfully prunes
96.99% of unrelated interactions, while CARD only removes 17.31%. In addition,
the remaining interactions using DCD are more likely to have higher probability
to be the valid conjunctive combined cause that causes adverse effect or DDI-
CAE. The results of these experiments are present in Table 3. Here, the more
variables in the synthetic data indicates a higher complexity of the causal graph
(i.e., closer to the real-world data). The results of DCD outperform those of
CARD in precision using the synthetic data. The computation time of DCD is
also lower than that of CARD, which is described in Table 4. When compared
to CARD, our method tends to have higher probability to predict causality with
higher precision and lower computation time.

To compare the dependence strength of our approach with CARD, Chi-
squared value is used to measure dependence strength, and PMI is used to
measure the positive dependence relationship, as shown in Table 5. When using
synthetic data, we outperform CARD in all measures tested. When using real-
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Table 5. Average Chi-squared value and PMI of predicted DDI with adverse effect of
DCD compared to CARD for variable sizes 50,100 and 200 and FARES.

Average Chi-squared value Average PMI
Method 50 100 200 FARES 50 100 200 FARES

DCD 1,478.84 3,255,886.03 7,192.55 833.34 0.32 0.30 0.20 1.25
CARD 36.31 4,312.94 569.13 - (-0.21) (-0.81) 0.02 -

world data, DCD also performs effectively; however, the number of variables
are too large for CARD to execute because of its exponential time complex-
ity. The results of CARD show the negative dependence (negative value in the
bracket) because it uses mutual information to measure the dependence (i.e., it
ignores positive and negative dependence). Therefore, CARD tends to be not as
effective at discovering causal DDICAE because it cannot identify co-occurrence
DDICAE (i.e., it relies on the positive dependence relationship of related drugs).

DCD is the only CBN and BCC method used to discover DDICAE and is
state-of-the-art in terms of both effectiveness and efficiency (when compared to
CARD). DCD does not only find causality in DDICAE but also confirms the
causal direction using domain knowledge and our proposed pruning steps. As
highlighted by our evaluation on real-world data, DCD is also more likely to
discover true causal DDICAE and to be an effective and efficient method to
support decisions for pharmaceutical and medical experts.

6 Conclusion

Causality discovery in drug-drug interaction and adverse effect is an important
task for health care decision support. Traditional methods to confirm causality
from drug-drug interaction and adverse effects, such as biological experiments,
are difficult, complicated and expensive. Computational methods, such as CBN
(e.g., PC-Algorithm), BCC methods (e.g., Markov Blanket), are effective to dis-
covery causality; however, they generally suffer from exponential time complex-
ity, and BCC is affected by the causality direction ambiguity problem. CARD is
the only CBN method to effectively discover causality in drug-drug interaction
and adverse effect. However, it does not perform well with real-world data and
also suffers from its exponential time complexity nature.

In this paper, we have proposed the Domain-knowledge-centred Causality
Discovery algorithm (DCD) that can discover causality from drug-drug interac-
tions and adverser effect. Advantages of our algorithm include:

– Domain knowledge is used effectively as a guide to discover causality, and it
can confirm the causal direction when used with our proposed pruning steps.

– Computation time is reduced by pruning most of the irrelevant drugs of the
target DDICAE (Drug-Drug interaction Causing Adverse Effect) by using
the proposed evidence-based DDICAE structure (relating to the domain
knowledge) integrated with conditional independence.
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– The discovered DDICAEs are meaningful because they are the co-occurrence
DDICAEs represented by the positive dependence values (unlike e.g., CARD,
that does not exploit such co-occurrence properties).

– The discovered DDICAEs include those that can and cannot be detected
using the V-structure property, unlike current state-of-the-art methods such
as CARD, that solely rely on the V-structure, whose underlying data as-
sumptions are in fact not necessarily satisfied in real-world data.

– The time complexity of the proposed method is polynomial (O(n2)) because
our algorithm applies a greedy algorithm to find causality, and this is a
speed-up compared to current state-of-the-art approaches (e.g., CARD).

However, our method provides a locally optimal solution and may not find all
drugs in the drug-drug interaction causing the adverse effect. In addition, our
method cannot be used when no domain knowledge exists. However, the out-
comes are still helpful to reduce the cost of drug-drug interaction discovery and
as a decision support for doctors when they prescribe medications to patients.
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Appendix I: Terminology used in this Paper

BCC: Bayesian Constraint-based Causality
CARD: Causal Association Rule Discovery
CBN: Causal Bayesian Network
DCD: Domain-knowledge-driven Causality Discovery
DDICAE: Drug-Drug Interactions Causing Adverse Effects
DDI: Drug-drug interactions
FAERS: Food and Drug Administration (FDA) adverse event report system


