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ABSTRACT
Federated online learning to rank (FOLTR) aims to preserve user
privacy by not sharing their searchable data and search interactions,
while guaranteeing high search effectiveness, especially in contexts
where individual users have scarce training data and interactions.
For this, FOLTR trains learning to rank models in an online man-
ner – i.e. by exploiting users’ interactions with the search systems
(queries, clicks), rather than labels – and federatively – i.e. by not
aggregating interaction data in a central server for training pur-
poses, but by training instances of a model on each user device on
their own private data, and then sharing the model updates, not the
data, across a set of users that have formed the federation. Existing
FOLTR methods build upon advances in federated learning.

While federated learning methods have been shown effective at
training machine learning models in a distributed way without the
need of data sharing, they can be susceptible to attacks that target
either the system’s security or its overall effectiveness.

In this paper, we consider attacks on FOLTR systems that aim to
compromise their search effectiveness. Within this scope, we exper-
iment with and analyse data and model poisoning attack methods
to showcase their impact on FOLTR search effectiveness. We also
explore the effectiveness of defense methods designed to counteract
attacks on FOLTR systems. We contribute an understanding of the
effect of attack and defense methods for FOLTR systems, as well as
identifying the key factors influencing their effectiveness.
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1 INTRODUCTION
In Online Learning to Rank (OLTR), all documents are stored in a
server, and users’ queries and interaction data (e.g., clicks) are also
collected in the server. The ranker is then trained in a centralised
and online manner. However, this setting could potentially infringe
on users’ privacy as users may not want to share their queries and
interactions. In addition, documents containing personal informa-
tion, like in email search [14] or desktop search [9], may not be
appropriate to surrender to a third party search service. To address
this issue, a new paradigm – Federated Online Learning to Rank
(FOLTR) – has been explored [13, 29–31]. In FOLTR (as in Figure 1),
clients retain their data locally, train a local ranker, and then share
the local model weights (or gradients) with the sever instead of the
raw data. The server plays a very different role – aggregating the
received weights in an effective manner (e.g., via federated aver-
aging [18]) and then broadcasting the obtained global ranker to
the clients, which in turns use the global ranker to replace their
local ranker. The whole process is carried out iteratively. Compared
with conventional OLTR, FOLTR provides a mechanism to safe-
guard users’ privacy. Also, the collaborative training makes the
local rankers more effective than if they were trained separately
with only the data of each single user.

Existing FOLTR systems however are not necessarily secure:
the federation mechanism provides malicious clients with oppor-
tunities for attacking the effectiveness of the global ranker. For
example, malicious clients can send arbitrary weights to the server
so that the convergence of the global ranker can be perturbed after
aggregation. This kind of attack is termed as untargeted poisoning
attack and aim to compromise the integrity of the global model
trained federatively [1]. This issue is critical for federated learning
systems, but it has not yet been studied for FOLTR. In this work, we
initiate the investigation of poisoning attacks and corresponding
defense methods in the context of FOLTR systems.

Outside of FOLTR systems, poisoning attacks on federated learn-
ing systems has been shown successful in compromising model in-
tegrity across several federated machine learning tasks [3, 4, 17, 24,
35], including in natural language processing and recommender sys-
tems. To mitigate or remove the threat posed by poisoning attacks,
defense strategies have been designed and optimised [5, 11, 34]. De-
fense strategies typically act upon the aggregation rules used in the
global model updating phase. The vulnerability of existing FOLTR
methods to these attacks and the effectiveness of the related defense
mechanism is unknown. Previous work in FOLTR has shown that
findings obtained with respect to federated learning in other areas
of Machine Learning or Deep Learning do not directly translate
to the online learning to rank context, and therefore the study of
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Figure 1: Overview of a FOLTR system with attack and defense mod-
ules (the arrows point to where these modules will be applied to).

these techniques in the context of FOLTR is important. For exam-
ple, Wang and Zuccon [31] have found that methods for dealing
with non identical and independently distributed data in federated
learning systems do not generalise to the context of FOLTR. There-
fore, the performance of poisoning attacks and defense methods
proposed in general domain cannot be guaranteed when applied to
FOLTR: we address this limitation by adapting and investigating
these methods to the setting of FOLTR and establish baselines for
future studies.

In this paper, we complement the state-of-the-art FOLTR sys-
tem with one untargeted attack module and one defense module
(shown in Figure 1). For the untargeted attack module, we imple-
ment a data poisoning method that compromises the local training
data to affect the trained model, and two model poisoning methods
that directly corrupt the local model updates. As for the defense
module, we implement four Byzantine-robust aggregation rules
to safeguard against such attacks. These defense mechanisms rely
on statistical techniques to identify outliers among the received
weights and subsequently exclude them during the aggregation
process. Through extensive empirical experiments, we (1) investi-
gate the vulnerability of FOLTR systems to untargeted poisoning
attacks, and show under which conditions poisoning attacks can
represent a real threat to FOLTR systems; and (2) demonstrate the
effectiveness of defense strategies, and importantly reveal the pres-
ence of issues with defense strategies if applied to FOLTR systems
for which an attack is not in place.

2 RELATEDWORK
2.1 Federated OLTR
Unlike traditional Learning to Rank (LTR), Online Learning to
Rank (OLTR) optimizes rankers through implicit user feedback
(e.g., clicks) to directly influence search engine result pages in real-
time production. The earliest method, Dueling Bandit Gradient
Descent (DBGD) [36], uniformly samples variations of the rank-
ing model and updates the ranker based on online interleaving
evaluation. To mitigate the high variance and regret inherent in
DBGD, subsequent methods have improved it through techniques
like multiple interleaving [19, 23], projected gradient [28], and coun-
terfactual evaluation [37]. In contrast to DBGD-based approaches,
Pairwise Differentiable Gradient Descent (PDGD) [20] utilizes a

Plackett-Luce model to sample the ranking list and estimates gra-
dients from inferred pairwise preferences. This method has been
found to exhibit greater resilience to noise and higher effectiveness
in optimizing neural models.

OLTR methods have been thoroughly investigated in a central-
ized setting, where a central server possesses the data to be searched
and gathers users’ search interactions, such as queries and clicks.
The training of the ranker also takes place on this server. However,
this centralized paradigm is not well-suited for privacy-preserving
requirement where each client may not wish to, or cannot, share
the searchable data, queries and other interactions. This is the case,
for example, of hospitals wanting to collaborate together to create
powerful rankers to identify the cohort of patients for specific rare
conditions (and as such, each hospital only holds limited data that
would not be sufficient to train an effective ranker individually),
but that by legislation they are forbidden to share the actual data.

To handle this issue, Federated Online Learning to Rank (FOLTR)
methods have been proposed. These methods consider a decentral-
ized machine learning scenario where data owners (clients) collabo-
ratively train the model without sharing their data under the coordi-
nation of a central server. One such method is the Federated OLTR
with Evolutionary Strategies (FOLtR-ES) [13], which extends the
OLTR optimization scenario to the Federated SGD [18] and utilizes
Evolution Strategies as optimization method [22]. While FOLtR-ES
performs well on small-scale datasets under certain evaluation met-
rics, its effectiveness does not generalise to large-scale datasets and
standard OLTR metrics [30]. Because of this, we do not consider
FOLtR-ES in our study. An alternative method is the FPDGD [29],
which builds upon the state-of-the-art OLTR method, the Pair-
wise Differentiable Gradient Descent (PDGD) [20], and integrates
it into the Federated Averaging (FedAvg) framework [18]. FPDGD
exhibits effectiveness comparable to centralized OLTR methods,
representing the current state-of-the-art FOLTR method. Thus, our
empirical investigation of attack and defense methods on FOLTR
systems relies on the FPDGD method, which is further described
in Section 3.

2.2 Poisoning Attacks on Federated Learning
Poisoning attacks on federated learning systems aim to compromise
the integrity of the system’s global model. Poisoning attacks can
be grouped according to the goals of the attack into two categories:
untargeted poisoning attacks, and targeted poisoning attacks (also
known as backdoor attacks).

Targeted poisoning attacks aim to manipulate a global model
according to the attacker’s objectives, such asmisclassifying a group
of data with certain features to a label chosen by the attacker, while
maintaining normal model effectiveness under other conditions.
This is accomplished through backdoor attacks [1, 3], which are
designed to allow the targeted manipulations to transpire stealthily
and without detection.

In contrast, untargeted poisoning attacks (also known as Byzan-
tine failures [5, 10, 15, 25, 34]) aim to decrease the overall effec-
tiveness of the global model indiscriminately for all users and data
groups. Current untargeted poisoning methods can be divided into
two categories: data poisoning and model poisoning. Label flip-
ping [4] is a representative data poisoning method: the labels of
honest training data are changed without altering their features.
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Model poisoning, on the other hand, directly affects the local model
updates before they are sent to the centralized server. For exam-
ple, Baruch et al. [2] poisons the local model updates through the
addition of noise computed from the variance between the before-
attack model updates, while Fang et al. [10]’s attacks are optimized
to undermine specific robust aggregation rules.

Among untargeted poisoning attacks on federated learning sys-
tems, model poisoning methods have been found to be the most
successful [1]. In particular, data poisoning attacks have limited
success when Byzantine-robust defense aggregation rules are in
use [10]; we introduce these defense methods in Section 5. Further-
more, most data poisoning attacks assume that the attacker has
prior knowledge about the entire training dataset, which is often
unrealistic in practice.

In this paper, we focus on untargeted poisoning attacks, delving
into the effectiveness of both data poisoning and model poisoning
methods. These attackmethods are studied within the framework of
a FOLTR system based on FPDGD, with and without the integration
of defense countermeasures.

3 PRELIMINARIES
3.1 Online Learning to Rank (OLTR)
In OLTR, the ranker is learned directly from user interactions (clicks
in our study), rather than editorial labels. In this context, each client
performs searches on several queries during each local training
phase. For each query 𝑞, the candidate documents set is 𝐷𝑞 and
the local training data held by each client is {(𝑥𝑖 , 𝑐𝑖 ), 𝑖 = 1...|𝐷𝑞 |}𝑞
with feature representation (𝑥𝑖 ) and user’s click signal (𝑐𝑖 ) for each
(𝑞, 𝑑𝑖 )-pair (where 𝑑𝑖 ∈ 𝐷𝑞). The value of the click feedback 𝑐𝑖 is
either 0 (unclicked) or 1 (clicked). In practice, the 𝑐𝑙𝑖𝑐𝑘 is dependent
on the relevance degree of the candidate document 𝑑𝑖 to the query
𝑞, the rank position of 𝑑𝑖 , and other noise or randomness factors.

3.2 Federated Pairwise Differentiable Gradient
Descent (FPDGD)

We add our attacking and defense modules to the current state-
of-the-art FOLTR system, the Federated Pairwise Differentiable
Gradient Descent (FPDGD) [29], which is outlined in Algorithm 1.
Within each iteration 𝑡 , each client 𝑢 considers 𝑁𝑢 interactions and
updates the local ranker using Pairwise Differentiable Gradient
Descent (PDGD) [20]. After the local update is finished, each client
sends the trainedweights 𝜃𝑢𝑡 to the server. The server then leverages
the widely-used Federated Averaging [18] to aggregate the local
model updates. Afterwards, the new global weights 𝜃𝑡+1 are sent
back to the clients as their new local rankers. We refer the reader
to the original FPDGD paper for more details [29].

4 ATTACKS TO FOLTR SYSTEMS
4.1 Problem Definition and Threat Model
Attacker’s capability: Poisoning attacks can come from bothmem-
bers (insiders) and non-members (outsiders) of the FOLTR system.
Insiders include both the central server and the clients, while out-
siders include eavesdroppers on communication channels and users
of the final ranker (this is similar to adversarial attacks during in-
ference). In this study, we focus on insider attacks by malicious

Algorithm 1 FederatedAveraging PDGD.
- set of clients participating training:𝑈 , each client is indexed by 𝑢;
- local interaction set: 𝐵, number of local interactions: 𝑁𝑢 .
Server executes:
1: initialize 𝜃0; scoring function: 𝑓 ; learning rate: 𝜂
2: for each round 𝑡 = 1, 2, . . . do
3: for each client 𝑢 ∈ 𝑈 in parallel do
4: 𝜃𝑢𝑡 , 𝑁𝑢 ← ClientUpdate(𝑢, 𝜃𝑡 )
5: 𝜃𝑡+1 ←

∑ |𝑈 |
𝑢=1

𝑁𝑢∑|𝑈 |
𝑢=1 𝑁𝑢

𝜃𝑢𝑡

ClientUpdate(𝑢, 𝜃 ): // Run on client 𝑢
1: for each local update 𝑖 from 1 to 𝑁𝑢 do
2: 𝜃 ← 𝜃 + 𝜂∇𝑓𝜃 //PDGD update with data from 𝐵

3: return (𝜃, 𝑁𝑢 ) to server

participants in the FOLTR system since insider attacks are generally
more effective than outsider attacks [17].
We assume the attacker has control over𝑚 collusive clients, which
means that the training data and local model updates can be ex-
changed among the malicious clients. We restrict the percentage of
collusive clients to less than 50%: higher amounts would make it
trivial to manipulate the global model.

Attacker’s background knowledge: We assume that the at-
tacker has only access to the compromised clients: the training data
and local rankers of all remaining clients remain not accessible to
the attacker. Thus, the attacker has limited prior knowledge: the
training data and the locally updated models from the poisoned
clients, and the shared global model. The exception of having full
prior knowledge1 will only be for the purpose of analysis and will
be clarified in place.

Problem Formulation: Assume 𝑛 clients are involved in the
FOLTR system. Among them,𝑚 clients are malicious. Without loss
of generality, we assume the first𝑚 participants are compromised.
Bewi the local model that the 𝑖-th client sends to the central server.
The global ranking model is updated through aggregating all wi:

wg = 𝑎𝑔𝑔(w1, ...,wm,wm+1, ...,wn) (1)

4.2 Data Poisoning
Data poisoning methods aim to corrupt the training data in order
to degrade the model’s effectiveness. This can be done by adding
malicious instances or altering existing instances in an adversarial
manner.

Our data poisoning attack to FOLTR is inspired by the label flip-
ping strategy [4, 27], in which the labels of honest training samples
from one class are flipped to another class, while the features of
the flipped samples are kept unchanged. In our case, we want to
change the label of irrelevant documents into "high-relevant" and
vise versa, without any changes to the feature representation of the
corresponding query-document pairs. To achieve so, the attacker
needs to intentionally flip the feedback by clicking on irrelevant
documents to bring arbitrary noise thus poison the training.

In our experiments, as no click data is available with the con-
sidered datasets, we follow the common practice from previous
1i.e. the attacker can also access information (training data, model updates) of non-
poisoned clients.
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Table 1: Instantiations of SDBN click model for simulating user
behaviour in experiments. 𝑟𝑒𝑙 (𝑑 ) denotes the relevance label for
document 𝑑 . Note that in the MQ2007 dataset, only three-levels of
relevance are used.We demonstrate the values forMQ2007 in bracket.

𝑃 (click = 1 | 𝑟𝑒𝑙 (𝑑))
rel(d) 0 1 2 3 4
perfect 0.0 (0.0) 0.2 (0.5) 0.4 (1.0) 0.8 (-) 1.0 (-)

navigational 0.05 (0.05) 0.3 (0.5) 0.5 (0.95) 0.7 (-) 0.95 (-)
informational 0.4 (0.4) 0.6 (0.7) 0.7 (0.9) 0.8 (-) 0.9 (-)
poison 1.0 (1.0) 0.8 (0.5) 0.4 (0.0) 0.2 (-) 0.0 (-)

𝑃 (stop = 1 | 𝑐𝑙𝑖𝑐𝑘 = 1, 𝑟𝑒𝑙 (𝑑))
rel(d) 0 1 2 3 4
perfect 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (-) 0.0 (-)

navigational 0.2 (0.2) 0.3 (0.5) 0.5 (0.9) 0.7 (-) 0.9 (-)
informational 0.1 (0.1) 0.2 (0.3) 0.3 (0.5) 0.4 (-) 0.5 (-)
poison 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (-) 0.0 (-)

literature in OLTR and FOLTR [20, 29, 31] of simulating click be-
haviour based on the extensively-used Simplified Dynamic Bayesian
Network (SDBN) click model [8]. This click model has been shown
to produce reasonable predictions of real-world user click behaviour.
Under SDBN, users examine a search engine result page (SERP)
from top to bottom. Each document is inspected and clicked with
click probability 𝑃 (𝑐𝑙𝑖𝑐𝑘 = 1|𝑟𝑒𝑙 (𝑑)), conditioned on the actual rele-
vance label 𝑟𝑒𝑙 (𝑑) of the document. After a document is clicked, the
user decides to stop the search session with stopping probability
𝑃 (𝑠𝑡𝑜𝑝 = 1|𝑐𝑙𝑖𝑐𝑘 = 1, 𝑟𝑒𝑙 (𝑑)), or continue otherwise. Commonly,
three instantiations of SDBN are considered: (1) a perfect user ex-
amines every document and clicks on all relevant documents thus
provides very reliable feedback, (2) a navigational user searches for
reasonably relevant documents with a higher probability to stop
searching after one click, (3) an informational user typically clicks
on many documents without a specific information preference thus
provides the noisiest click feedback.

Inspired by the three instantiations, we manipulate one poison
instantiation to simulate malicious clicking behaviour. The click
probability of poison instantiation is the reverse version of the
perfect click behaviour: the highest probability of clicking is associ-
ated with the least relevance label. All stop probabilities in poison
instantiation are set to zero as we assume the attacker wants to
poison as many clicks as possible. The values we adopt for the four
instantiations of SDBN are reported in Table 1.

4.3 Model Poisoning
Unlike data poisoning, model poisoning directly modifies the local
model updates (through poisoning gradients or model parameter
updates) before sending them to the server. Some literature shows
that model poisoning is more effective than data poisoning [1, 3]
while it also requires sophisticated technical capabilities and high
computational resources than solely poisoning data. In this section,
we investigate two existing model poisoning methods.

4.3.1 Little Is Enough (LIE). Baruch et al. [2] find that if the
variance between local updates is sufficiently high, the attacks
can make use of this by adding small amounts of noise to the
compromised local models and bypass the detection of defense
methods. They provide a perturbation range in which the attackers

can successfully poison the learning process. To conduct the attack,
the adversaries first compute the average 𝜇 and standard deviation
𝜎 of the before-attack benign local model updates of all collusive
attackers (w1, ...,wm). A coefficient 𝑧 is used and computed based on
the number of benign and malicious clients. Finally, the local model
of attackers is manipulated aswm

i = 𝜇−𝑧𝜎 for 𝑖 ∈ {1, ...,𝑚} and sent
to the central server who aggregates updates from all participants
under certain rules in Equation 1. Baruch et al. [2] observe that, for
image classification tasks, the small noises sufficiently compromise
the global model while being sufficiently small to evade detection
from defense strategies.

4.3.2 Fang’s Attack. Fang et al. [10] proposed an optimization-
based model poisoning attack tailored to specific robust aggregation
rules (Krum, Multi-Krum, Trimmed Mean and Median), as will be
explained in Section 5.

Fang’s attack is conducted separately under two assumptions: (1)
full knowledge, and (2) partial knowledge. Under full knowledge,
the attacker has full access to local model updates of all benign
clients. This is a strong and impractical assumption, and it is of-
ten not the case in real attacks on federated learning systems. In
the partial knowledge scenario, the attacker only knows the local
training data and models of the compromised clients.

In their attack to the robust aggregation rules Krum and Multi-
Krum, the attacker computes the average 𝜇 of the benign updates in
their possession, computes a perturbation s = −sign(𝜇 −wg), and
finally computes a malicious update aswm

i = (wg +𝜆 · s) by solving
for the coefficient 𝜆, where wg is the before-attack global model
during each federated training step. Thus, under the full knowledge
assumption, the average 𝜇 and perturbation signal s are computed
based on all benign updates (w1, ...,wm,wm+1, ...,wn). For updates
of the malicious clients (w1, ...,wm), the before-attack benign up-
dates are leveraged. Under the partial knowledge scenario, only the
before-attack benign updates (w1, ...,wm) are used to estimate the
real values for average 𝜇 and the reversed deviation vector s.

When attacking Trimmed Mean and Median, the goal is to craft
the compromised local models based on the maximum𝑤𝑚𝑎𝑥,𝑗 or
minimum 𝑤𝑚𝑖𝑛,𝑗 benign parameters for each dimension 𝑗 of the
local model (this is one of the key features used by Trimmed Mean
andMedian for defending). The choice of𝑤𝑚𝑎𝑥,𝑗 or𝑤𝑚𝑖𝑛,𝑗 depends
on which one deviates the global model towards the inverse of its
update direction without attacks. Similar to when attacking Krum,
the reversed deviation vector s is computed with full knowledge or
estimated under partial knowledge with only before-attack updates
from all attackers, so as the estimation of𝑤𝑚𝑎𝑥,𝑗 and𝑤𝑚𝑖𝑛,𝑗 . After
getting the 𝑗-th value of vector s, the 𝑗-th dimension of the compro-
mised local model is randomly sampled from the range built based
on𝑤𝑚𝑎𝑥,𝑗 (if 𝑠 𝑗 = 1) or𝑤𝑚𝑖𝑛,𝑗 (if 𝑠 𝑗 = −1).

5 DEFENSE FOR FOLTR SYSTEMS
The current state-of-the-art defense methods against untargeted
poisoning attacks focus on enhancing the robustness of the aggre-
gation rules (Equation 1) used during the global update phase, to
counteract attempts by malicious clients to corrupt the training.

Next, we describe four robust aggregation rules that have been
shown effective in general federated learning, but have not been
evaluated for FOLTR.
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5.1 Krum and Multi-Krum
The intuition behind the Krum method for robust aggregation [5]
is that the malicious local model updates need to be far from the
benign ones in order for the success of poisoning the global model.
To evaluate how far a model update wi is from the others, Krum
computes the Euclidean distances between wi and wj for 𝑖 ≠ 𝑗 . We
denote 𝑖 → 𝑗 if wj belongs to the set of 𝑛 −𝑚 − 2 closest local
models of wi. Then the sum of 𝑛 −𝑚 − 2 shortest distances to wi
is computed and denoted as 𝑠 (𝑖) = ∑

𝑖→𝑗 𝐸𝑢𝑐_𝑑𝑖𝑠𝑡 (wi,wj). After
computing the distance score 𝑠 (𝑖) for all local updates, Krum selects
the local model with the smallest 𝑠 (𝑖) as the global model𝑤𝑔 :

wg = Krum(w1, ...,wm,wm+1, ...,wn) = argmin
wi

𝑠 (𝑖) (2)

Multi-Krum is a variation of the Krum method. Multi-Krum,
like Krum, calculates the distance score 𝑠 (𝑖) for each wi. However,
instead of choosing the local model with the lowest distance score
as the global model (as Krum does), Multi-Krum selects the top 𝑓

local models with the lowest scores and computes the average of
these 𝑓 models (w′i , where 𝑖 ∈ {1, ..., 𝑓 }) to be the global model.

wg = Multi-Krum(w1, ...,wm,wm+1, ...,wn) =
1
𝑓

𝑓∑︁
𝑖=1

w′i (3)

In our empirical investigation, we set the Multi-Krum parameter
𝑓 = 𝑛 −𝑚, as in previous work [5].

5.2 Trimmed Mean and Median
Assume that𝑤𝑖 𝑗 is the 𝑗-th parameter of the 𝑖-th local model. For
each 𝑗-th model parameter, the Trimmed Mean method [34] aggre-
gates them separately across all local models. After removing the 𝛽
largest and smallest among𝑤1𝑗 , ...,𝑤𝑛𝑗 , the TrimmedMean method
computes the mean of the remaining 𝑛 − 2𝛽 parameters as the 𝑗-th
parameter of the global model. We denote𝑈 𝑗 = {𝑤1𝑗 , ...,𝑤 (𝑛−2𝛽 ) 𝑗 }
as the subset of {𝑤1𝑗 , ...,𝑤𝑛𝑗 } obtained by removing the largest and
smallest 𝛽 fraction of its elements. That is, the 𝑗-th parameter of
the global model updated by Trimmed Mean is:

𝑤 𝑗 = Trimmed Mean(𝑤1𝑗 , ...,𝑤𝑛𝑗 ) =
1

𝑛 − 2𝛽
∑︁

𝑤𝑖 𝑗 ∈𝑈 𝑗

𝑤𝑖 𝑗 (4)

In our implementation, as in previous work on general federated
learning [10, 25, 26], we set 𝛽 to be the number of compromised
clients𝑚.

The Median method, like the Trimmed Mean method, sorts the
𝑗-th parameter of 𝑛 local models. Instead of discarding the 𝛽 largest
and smallest values (as in Trimmed Mean), the Median uses the
median of𝑤1𝑗 , ...,𝑤𝑛𝑗 as the 𝑗-th parameter of the global model:

𝑤 𝑗 = Median(𝑤1𝑗 , ...,𝑤𝑛𝑗 ) (5)

In case 𝑛 is an even number, the median is calculated as the average
of the middle two values.

6 EXPERIMENTAL SETUP
We next describe our experimental setup to evaluate the considered
attack and defense mechanism in the context of a FOLTR system.

Datasets. Our experiments are performed on four commonly-
used LTR datasets: MQ2007 [21], MSLR-WEB10k [21], Yahoo [7],
and Istella-S [16]. Each dataset consists of a set of queries and the
corresponding pre-selected candidate documents for each query.

Each query-document pair is represented by a multi-dimensional
feature vector, and have a corresponding annotated relevance label.
Among the selected four datasets, MQ2007 [21] is the smallest with
1,700 queries, 46-dimensional feature vectors, and 3-level relevance
assessments (from not relevant (0) to very relevant (2)). The other
three datasets are larger, more recent, and provided by commercial
search engines. MSLR-WEB10k has 10,000 queries and each query
is associated with 125 documents on average, each represented with
136 features. Yahoo has 29,900 queries and each query-document
pair has 700 features. Istella-S is the largest, with 33,018 queries,
220 features, and an average of 103 documents per query. These
three commercial datasets are all annotated for relevance on a
five-grade-scale: from not relevant (0) to perfectly relevant (4).

Federated setup. We consider 10 participants (𝑛 = 10) in our
experiments, among which𝑚 clients are attackers. This setup is
representative of a cross-silo FOLTR system, typical of a federation
of a few institutions or organisations, e.g. hospitals creating a ranker
for cohort identification from electronic health records [12]. In
this paper we will not consider the setup of a cross-device FOLTR
system, where many clients are involved in the federation: this is
representative of a web-scale federation.

We assume that the malicious clients can collude with each
other to exchange their local data and model updates to enhance
the impact of attacks. In the federated setting, each client holds a
copy of the current ranker and updates the local ranker through
issuing 𝑁𝑢 = 5 queries along with the respective interactions. The
attackers can only compromise the local updating phase through
poisoning the training data or model updates of the controlled
malicious clients. After the local updating finishes, the central server
will receive the updated ranker from each client and aggregate all
local messages to update the global ranker. In our experiments,
we consider the following aggregation rules: (1) FedAvg, (2) other
robust aggregation rules introduced in Section 5. Unless otherwise
specified, we train the global ranker through 𝑇 = 10, 000 global
updating times.

User simulations. We follow the standard setup for user simu-
lations in OLTR [20, 29, 31, 37]. We randomly sample from the set
of queries in the static dataset to determine the query that the user
issues each time. After that, the pre-selected documents for the
query are ranked by the current local ranking model to generate a
ranking result. For every query, we limit the SERP to 10 documents.
User interactions (clicks) on the displayed ranking list are simulated
through the SDBN click models introduced in Sec 4.2. For the user
simulation in model poisoning, we simulate three types of users
using the three click instantiations: perfect, navigational, and in-
formational. We experiment on the three types of users separately
in order to show the impact of attacking on different types of users.
For data poisoning, we simulate the poisoned click based on the
poison click combining with benign users on the aforementioned
three types of click models separately to show the impact of our
data poisoning strategies on different types of benign clicks.

Ranking models. We experiment on a linear and neural model
as the ranking model when training with FPDGD. For the linear
model, we set the learning rate 𝜂 = 0.1 and zero initialization
was used. As in the original PDGD and FPDGD studies [20, 29],
the neural ranker is optimized using a single hidden-layer neural
network with 64 hidden nodes, along with 𝜂 = 0.1.
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Evaluation. We evaluate the attack methods by comparing the
gap in offline performance obtained when a specific attack is per-
formed and when no attack is performed. The higher the perfor-
mance degradation, the more effective the attack.

As we limit each SERP to 10 documents, we use 𝑛𝐷𝐶𝐺@10 for
offline evaluation. The offline performance is measured through
averaging the 𝑛𝐷𝐶𝐺 scores of the global ranker over the queries
in the held-out test dataset with the actual relevance label. We
record the offline 𝑛𝐷𝐶𝐺@10 score of the global ranker during each
federated training update.

7 RESULTS FOR DATA POISONING
We perform data poisoning attack and four defense methods across
different settings of user behaviours (i.e. click models) and number
of attackers ({10%, 20%, 30%, 40%}). Results on MSLR10k with a
linear ranker are shown as solid lines in Figure 2 – results for other
datasets are similar and omitted for space constraints.

7.1 Attacks
In the plots of Figure 2, the solid lines represent the results of data
poisoning when no defense method is deployed. Among them, the
black line represents no attacking situation ("honest" baseline). We
can observe that the effect of data poisoning depends on the settings
of user behaviors (i.e. click models) and the number of attackers.

Effect of number of attackers. By comparing the solid curves
in each plot of Figure 2, we can observe that the overall perfor-
mance of the FOLTR system decreases as the number of attackers
increases, compared to the “honest” baseline. Thus, the higher the
number of attackers, the more degradation on the FOLTR system
is experienced.

Ease of attack under different user behaviours. By compar-
ing the plots within each row, we see the effect of data poisoning is
different under different user behaviours. In the navigational and in-
formational settings, attacks carried by as little as 20% of clients can
significantly affect the system. However, to successfully attack the
perfect click, a higher number of malicious clients is needed. Across
all datasets, the informational click model is the most affected by
attacks, while the perfect click model only experiences considerable
losses when a large number of clients has been compromised.

Neural ranker vs. linear ranker. The findings from results for
the neural ranker under data poisoning attack are similar to those
for the linear ranker – and this pattern is valid across all remaining
experiments we report. Therefore, we only report experiments
using the linear ranker due to limited space.

7.2 Defense
Next, we demonstrate the effectiveness of our four defense mecha-
nisms against data poisoning attack. The results on MSLR10k are
shown by the dashed curves in Figure 2. Each row corresponds to
one defense method.

Krum.Overall, Krum performswell across all datasets and for all
three types of click models once the percentage of malicious clients
reaches 20% or higher, with the exception of MQ2007. However,
Krum does not work when defending against 10% of clients, except
for Istella-S. The accuracy drop from deploying Krum (as shown in
Section 9) outweighs its effectiveness in defense, especially when

there is a relatively small impact on the effectiveness of the model,
as is in the case when 10% of the clients are malicious. Addition-
ally, Krum does not show any improvement in defending certain
scenarios under the informational click model, such as for MQ2007
under all percentages of malicious clients, and for MSLR10k when
40% of clients are malicious.

Multi-Krum. The results obtained for Multi-Krum show similar
effectiveness on the perfect click model as Krum. It is important
to note that the perfect click model is the hardest to attack among
the three types of click models considered. Multi-Krum provides
slightly better defense performance on navigational clicks com-
pared to Krum, especially when there are fewer attackers (30% or
less). However, for the informational click model, Multi-Krum does
not perform as well as Krum. This is because the variance of the
local model updates is relatively higher in the noisier informational
click model. After averaging the selected local models, the advan-
tage of Multi-Krum is reduced, especially when there are more than
30% malicious clients.

Trimmed Mean. Across all experiments, Trimmed Mean does
not perform well on the noisiest click model (informational) when
there are more than 30% malicious clients involved. When the
malicious clients are 20% or 30%, Trimmed Mean provides lower
performance gains compared to Krum, but it performs similarly to
Krum when only 10% of the clients are malicious.

Median. Like Trimmed Mean, Median does not provide im-
proved performance on the noisy informational click model when
30% or 40% of clients are malicious. Similarly, and like other robust
aggregation rules, Median does not show significant improvements
when only 10% of clients are malicious. In fact, the Median’s perfor-
mance even decreases on the navigational click model for MSLR10k
with 10% of malicious clients. When the malicious clients are 20%
and 30% of all clients in the federation, the performance gain pro-
vided by Median is similar to that of Trimmed Mean.

Summary. Overall, Krum and Multi-Krum work better than
Trimmed Mean or Median when defending against data poisoning
attacks, with the exception that TrimmedMean andMedian perform
better on the smaller MQ2007 dataset.

8 RESULTS FOR MODEL POISONING
We implement the model poisoning strategies specified in Sec-
tion 4.3 and report their results, specifically comparing their poi-
soning effectiveness with that of data poisoning methods.

8.1 Little Is Enough (LIE)
The experimental results obtained for LIE are partially shown in
Figure 3(a), along with a comparison with data poisoning.

Ineffectiveness of LIE. The results indicate that LIE is less ef-
fective in attacking the performance of the global model compared
to data poisoning, with one exception for the perfect click model
on the Yahoo dataset when 40% of the clients are malicious. This
shows that adding random noise to compromise the local models is
less effective for attacking the global ranker performance than com-
promising the click signals directly. Because of the poor attacking
effectiveness of LIE, we do not investigate how it performs when
defense strategies are put in place.
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(a) MSLR-WEB10k (Krum)

(b) MSLR-WEB10k (Multi-Krum)

(c) MSLR-WEB10k (Trimmed Mean)

(d) MSLR-WEB10k (Median)

Figure 2: Offline performance (nDCG@10) for MSLR-WEB10k under data poisoning attack and defense strategies, simulated with three benign
instantiations of SDBN click model and different percentage of attackers equaling to {10%, 20%, 30%, 40%}; results averaged across all dataset
splits and experimental runs.
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(a) MSLR-WEB10k (LIE)

(b) MSLR-WEB10k (Fang’s attack on Krum)

(c) MSLR-WEB10k (Fang’s attack on Krum - full knowledge )

Figure 3: Offline performance (nDCG@10) under model poisoning attacks, simulated with three benign instantiations of SDBN click model
under different percentage of attackers equaling to {10%, 20%, 30%, 40%}; results averaged across all dataset splits and experimental runs.

8.2 Fang’s Attack
In our experiments, we implement Fang’s attacks on four robust
aggregation rules, with each attacking strategy tailoring specific
defense strategies except that the same attack method is shared for
Trimmed Mean and Median.

Full knowledge vs. partial knowledge. First, we compare
the attacking performance under both full knowledge and partial
knowledge assumptions. According to previous findings in general
federated learning [10], attacking with full knowledge performs
consistently better than with partial knowledge as the tailored at-
tack can be optimised with auxiliary information about benign
clients. From our results (results on MSLR10k under Krum are
shown in Figure 3(b)), we observe that full knowledge performs
better with fewer malicious clients (10% and 20%), but the gap in ef-
fectiveness obtained between full and partial knowledge decreases
as the number of malicious clients increases (30% and 40%), thus

leading to differences compared to the general results in feder-
ated learning. This is because with more malicious clients, partial
knowledge (knowledge of before-attack local model updates for
compromised clients) provides enough information to effectively
poison the global model while avoiding detection by robust defense
strategies.

Fang’s Attack vs. data poisoning. Next, we compare Fang’s
attack under the full knowledge assumption against the data poi-
soning method under the same robust-aggregation rule (results on
MSLR10k under Krum are shown in Figure 3(c)). We find that Fang’s
attack can successfully poison FOLTR and mitigate the impact of
defense methods compared to data poisoning. This finding aligns
with the original results from Fang et al. [10].

9 IMPACT OF DEFENSE UNDER NO-ATTACK
Robust aggregation rules exhibit improvements in defending against
poisoning attacks under some circumstances. But in real-world set-
tings, the administrator of the FOLTR system has no knowledge
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(a) MSLR-WEB10k (benign clients)

Figure 4: Offline performance (nDCG@10) of FOLTR system when no attack is present but defense strategies are deployed; results averaged
across all dataset splits and experimental runs.

of whether an attack is taking place. Thus, if the system admin-
istrator wishes to ensure protection against attacks, they may be
required to deploy defense strategies irrespective of an attack ever
taking place, or not. However, is there a price to pay, in terms of
search effectiveness, if a defense strategy is deployed on a FOLTR
system that is not exposed to an attack?We investigate this next, by
comparing the effectiveness of a FOLTR system with no malicious
clients and with different defense strategies implemented against
the effectiveness of the same system with no defense.

The experimental results on MSLR10k reported in Figure 4 show
that using Krum and Median leads to a decrease in performance
compared to the FedAvg baseline when no attacks are present.
Results for other datasets are similar and are omitted for space
reasons. This finding has also been reported before in general fed-
erated learning literature [6, 32, 33], especially when each client’s
local training data is non independent and identically distributed
(non-IID). This is because those Byzantine-robust FL methods ex-
clude some local model updates when aggregating them as the
global model update [6, 32]. This decrease raises questions about
the use of these methods in FOLTR systems when no malicious
client is present – and it suggests that if reliable methods for attack
detection were available, then defense mechanisms may better be
deployed only once the attack takes place.

10 SUMMARY OF KEY FINDINGS
Based on the presented empirical results above, we identify the
following key findings:

• In general, the perfect click type is more difficult to attack com-
pared to the other two click models, whether it be data or model
poisoning methods, except in specific instances when employ-
ing Fang’s attack under the full knowledge assumption. To suc-
cessfully attack a FOLTR system when perfect click feedback
is present, a larger number of attackers is required due to the
relatively low variance between local updates. As a result, more
clients must be compromised to inject noise, otherwise the attack
is more likely to be detected by robust aggregation rules.
• Among all attacking strategies studied in this paper, Fang’s attack
with full knowledge emerged as the most successful in diminish-
ing the performance of the global model, though some exceptions
were observed in the noisy informational click scenario. When
there were more malicious clients (i.e. 30% or 40% of the total
clients), Fang’s attack with partial knowledge is just as effec-
tive as with full knowledge. This indicates that model poisoning

is more effective than data poisoning. Furthermore, when de-
fense measures were implemented, Fang’s attack demonstrated
greater success against Krum and Multi-Krum aggregation rules
in comparison to Trimmed Mean and Median.
• It is essential to highlight that althoughKrumhas proven effective
in countering data poisoning and Trimmed Mean in defending
against Fang’s attack, deploying these two aggregation rules
should be exercised with caution as they result in an overall
decrease in search performance if the system is not exposed to
attacks. Thus, the selection of these defense mechanisms should
be carefully considered, taking into account the specific context
and risk of potential attacks to strike the right balance between
security and search effectiveness.

11 CONCLUSION
In this paper we explore attacks and defense mechanisms for feder-
ated online learning to rank (FOLTR) systems, focusing on the po-
tential degradation of ranking performance caused by untargedted
poisoning attacks. We investigate both data and model poisoning
strategies and evaluate the effectiveness of various state-of-the-
art robust aggregation rules for federated learning in countering
these attacks. Our findings indicate that sophisticated model poi-
soning strategies outperform data poisoning methods, even when
defense mechanisms are in place. We also reveal that deploying
defense mechanisms without an ongoing attack can lead to ranker
performance degradation. This finding recommends care in the
deployment of such mechanisms and suggests that future research
should explore defense strategies that do not deteriorate FOLTR
ranker performance if no attack is underway.

This is the first study that systematically analyses the threats
brought by untargeted poisoning attacks and demonstrates the ef-
fectiveness (and associated drawbacks) of existing defense methods
on mitigating the impact of malicious adversaries under federated
online learning to rank system.

Due to space limitations, we could not include all experiment
results in the paper. The complete results, along with code and
settings are available at https://github.com/ielab/foltr-attacks.
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